Main Article Content


Marine ecosystems are under serious threat from climate change, which can alter species distributions, biodiversity patterns, community structure, and ecosystem functioning by affecting temperature, acidification, and current patterns. Species distribution models (SDMs) are a useful tool for ecologists to link species’ fundamental niches with environmental conditions and project potential distribution shifts under climate change scenarios. This study modeled current and future habitat suitability for the black pomfret (Parastromateus niger) using an ensemble SDM with 1,396 occurrence records and environmental data layers (depth, temperature, salinity, currents). Six algorithms (MAXENT, GAM, GLM, RF, ANN, MARS) with ensemble approach modeled species distribution under current and future semi-optimistic (RCP 4.5) and pessimistic (RCP 8.5) scenarios for both 2050s and 2100s. Models were evaluated by AUC, TSS and Cohen’s Kappa indices. According to the results, future range changes under all optimistic and pessimistic scenarios were negative. These results reveal prospective climate change impacts on the geographic range of P. niger, providing a valuable basis for science-based adaptation initiatives aimed at ensuring long-term sustainability of populations. Localized conservation and global mitigation policies are urgently needed to sustain P. niger and reliant human communities into the future. Habitat modeling supports climate-resilient management strategies for threatened marine species.


Aquatic biodiversity Species distribution Modeling Climate change Range change Conservation

Article Details

How to Cite
AHMADI, A., IMANPOUR NAMIN, J., SHARIFIAN, S., & DALIRI, M. (2024). Habitat suitability projections for the Black Pomfret (<i>Parastromateus niger</i>) under climate change: an ensemble modeling approach. Iranian Journal of Ichthyology, 10(4), 215–224.


  1. Allouche, O.; Tsoar, A. & Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6): 1223-1232.
  2. Ángeles-González, L.E.; Martínez-Meyer, E.; Yañez-Arenas, C.; Velázquez-Abunader, I.; López-Rocha, J.A.; Torrejón-Magallanes, J. & Rosas, C. 2021. Climate change effect on Octopus maya (Voss and Solís-Ramírez, 1966) suitability and distribution in the Yucatan Peninsula, Gulf of Mexico: A correlative and mechanistic approach. Estuarine, Coastal and Shelf Science 260, 107502.
  3. Araújo, M.B. & New, M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22(1): 42-47.
  4. Araújo, M.B. & Williams, P.H. 2000. Selecting areas for species persistence using occurrence data. Biological Conservation 96(3): 331-345.
  5. Assis, J.; Tyberghein, L.; Bosch, S.; Verbruggen, H.; Serrão, E.A. & De Clerck, O. 2018. Bio‐ORACLE v2. 0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography 27(3): 277-284.
  6. Baer, K.C. & Maron, J.L. 2020. Ecological niche models display nonlinear relationships with abundance and demographic performance across the latitudinal distribution of Astragalus utahensis (Fabaceae). Ecology and Evolution 10(15): 8251-8264.
  7. Basher, Z. & Costello, M.J. 2016. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ, 4: e1713.
  8. Ben-Hasan, A. & Christensen, V. 2019. Vulnerability of the marine ecosystem to climate change impacts in the Arabian Gulf—an urgent need for more research. Global Ecology and Conservation 17: e00556.
  9. Blanchard, J.L.; Jennings, S.; Holmes, R.; Harle, J.; Merino, G.; Allen, J.I.; Holt, J.; Dulvy, N.K. &| Barange, M. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1605): 2979-2989.
  10. Buchanan, J.R.; Ralph, G.M.; Krupp, F.; Harwell, H.; Abdallah, M.; Abdulqader, E.; Al-Husaini, M.; Bishop, J.M.; Burt, J.A.; Choat, J.H. & Collette, B.B. 2019. Regional extinction risks for marine bony fishes occurring in the Persian/Arabian Gulf. Biological Conservation 230: 10-19.
  11. Burke, L.; Reytar, K.; Spalding, M. & Perry, A. 2011. Reefs at risk revisited. Washington, DC: World Resources Institute.
  12. Chamberlain, S.A. & Boettiger, C. 2017. R Python, and Ruby clients for GBIF species occurrence data (No. e3304v1). Peer J Preprints.
  13. Chen, Y.; Shan, X.; Ovando, D.; Yang, T.; Dai, F. & Jin, X. 2021. Predicting current and future global distribution of black rockfish (Sebastes schlegelii) under changing climate. Ecological Indicators 128: 107799.
  14. Cheung, W.W.; Jones, M.C.; Reygondeau, G.;, Stock, C.A.; Lam, V.W. & Frölicher, T.L. 2016. Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling 325: 57-66.
  15. Cheung, W.W.; Lam, V.W.; Sarmiento, J.L.; Kearney, K.; Watson, R.E.G.; Zeller, D. & Pauly, D. 2010. Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16(1): 24-35.
  16. Cheung, W.W.; Lam, V.W.; Sarmiento, J.L.; Kearney, K.; Watson, R. & Pauly, D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10(3): 235-251.
  17. Cheung, W.W.; Lam, V.W.; Sarmiento, J.L.; Kearney, K.; Watson, R. & Pauly, D. 2009. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10(3): 235-251.
  18. Cheung, W.W.; Lam, V.W.; Sarmiento, J.L.; Kearney, K.; Watson, R.E.G.; Zeller, D. & Pauly, D. 2010. Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology 16(1): 24-35.
  19. Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1): 37-46.
  20. Doney, S.C.; Ruckelshaus, M.; Emmett Duffy, J.; Barry, J.P., Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N. & Polovina, J. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4: pp.11-37.
  21. Elith, J. & Graham, C.H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32(1): 66-77.
  22. Elith, J. & Leathwick, J.R., 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677-697.
  23. FAO. 2018. The state of world fisheries and aquaculture 2018-Meeting the sustainable development goals. Rome.
  24. Feng, X.; Park, D.S.; Walker, C.; Peterson, A.T.; Merow, C. & Papeş, M. 2019. A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution 3(10): 1382-1395.
  25. Fischer, W. & Hureau, J.C. 1985. FAO species identification sheets for fishery purposes Southern Ocean: Fishing Areas 48, 58 and 88 (CCAMLR Convention Area).
  26. Free, C.M.; Thorson, J.T.; Pinsky, M.L.; Oken, K.L.; Wiedenmann, J. & Jensen, O.P. 2019. Impacts of historical warming on marine fisheries production. Science 363(6430): 979-983.
  27. Freitas, C.; Villegas‐Ríos, D.; Moland, E. & Olsen, E.M. 2021. Sea temperature effects on depth use and habitat selection in a marine fish community. Journal of Animal Ecology 90(7): 1787-1800.
  28. Gattuso, J.P.; Magnan, A.; Billé, R.; Cheung, W.W.; Howes, E.L.; Joos, F.; Allemand, D.; Bopp, L.; Cooley, S.R.; Eakin, C.M. & Hoegh-Guldberg, O. 2015. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243): aac4722.
  29. Gattuso, J.P.; Magnan, A.K.; Bopp, L.; Cheung, W.W.; Duarte, C.M.; Hinkel, J.; Mcleod, E.; Micheli, F.; Oschlies, A.; Williamson, P. & Billé, R. 2018. Ocean solutions to address climate change and its effects on marine ecosystems. Frontiers in Marine Science p. 337.
  30. Guisan, A.; Thuiller, W. & Zimmermann, N.E. 2017. Habitat suitability and distribution models: with applications in R. Cambridge University Press.
  31. Hanley, J.A. & McNeil, B.J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1): 29-36.
  32. Hoegh-Guldberg, O. & Bruno, J.F. 2010. The impact of climate change on the world’s marine ecosystems Science 328: 1523-1528.
  33. Jones, M.C. & Cheung, W.W. 2015. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science 72(3): 741-752.
  34. Jones, M.C.; Dye, S.R.; Pinnegar, J.K.; Warren, R. & Cheung, W.W. 2012. Modelling commercial fish distributions: Prediction and assessment using different approaches. Ecological Modelling 225: 133-145.
  35. Kumar, S.; Stohlgren, T.J. & Chong, G.W. 2006. Spatial heterogeneity influences native and nonnative plant species richness. Ecology 87(12): 3186-3199.
  36. Lauzeral, C.; Grenouillet, G. & Brosse, S. 2015. The iterative ensemble modelling approach increases the accuracy of fish distribution models. Ecography 38(2): 213-220.
  37. Manikandan, B.; Ravindran, J.; Vidya, P.J.; Shrinivasu, S.; Manimurali, R. & Paramasivam, K. 2017. Resilience potential of an Indian Ocean reef: an assessment through coral recruitment pattern and survivability of juvenile corals to recurrent stress events. Environmental Science and Pollution Research 24: 13614-13625. .
  38. Park, J.U.; Lee, T.; Kim, D.G. & Shin, S. 2020. Prediction of potential habitats and distribution of the marine invasive sea squirt, Herdmania momus. Korean Journal of Environmental Biology 38(1): 179-188.
  39. Perry, A.L.; Low, P.J.; Ellis, J.R. & Reynolds, J.D. 2005. Climate change and distribution shifts in marine fishes. Science 308(5730): 1912-1915.
  40. Pinsky, M.L.; Worm, B.; Fogarty, M.J.; Sarmiento, J.L. & Levin, S.A. 2013. Marine taxa track local climate velocities. Science 341(6151): 1239-1242.
  41. Poloczanska, E.S.; Brown, C.J.; Sydeman, W.J.; Kiessling, W.; Schoeman, D.S.; Moore, P.J.; Brander, K.; Bruno, J.F.; Buckley, L.B.; Burrows, M.T. & Duarte, C.M. 2013. Global imprint of climate change on marine life. Nature Climate Change 3(10): 919-925..
  42. Poloczanska, E.S.; Burrows, M.T.; Brown, C.J.; García Molinos, J.; Halpern, B.S.; Hoegh-Guldberg, O.; Kappel, C.V.; Moore, P.J.; Richardson, A.J.; Schoeman, D.S. & Sydeman, W.J. 2016. Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, p. 62.
  43. Provoost, P. & Bosch, S. 2022. robis: R Client for the OBIS API.
  44. Rijnsdorp, A.D.; Peck, M.A.; Engelhard, G.H.; Möllmann, C. & Pinnegar, J.K., 2009. Resolving the effect of climate change on fish populations. ICES Journal of Marine Science 66(7): 1570-1583.
  45. Robinson, L.M.; Elith, J.; Hobday, A.J.; Pearson, R.G.; Kendall, B.E.; Possingham, H.P. & Richardson, A.J. 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20(6): 789-802..
  46. Saeedi, H.; Basher, Z. & Costello, M.J. 2017. Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgoland Marine Research 70(1): 1-12.
  47. Sharifian, S.; Kamrani, E. & Saeedi, H., 2021a. Global future distributions of mangrove crabs in response to climate change. Wetlands 41: 1-14.
  48. Sharifian, S.; Kamrani, E. & Saeedi, H. 2021b. Insights toward the future potential distribution of mangrove crabs in the Persian Gulf and the Sea of Oman. Journal of Zoological Systematics and Evolutionary Research 59(7): 1620-1631.
  49. Sharifian, S.; Mortazavi, M.S. & Mohebbi-Nozar, S.L. 2022. Modeling present distribution commercial fish and shrimps using MaxEnt. Wetlands 42(5): 39.
  50. Sorte, C.J.; Williams, S.L. & Carlton, J.T. 2010. Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography 19(3): 303-316.
  51. Squalli, J. 2020. Climate change and the collapse of global fish stocks: A bioeconomic analysis. Ecological Economics 169: 106521.
  52. Tan, H.H. 2009. Observations on the Black Pomfret, Parastromateus niger (Teleostei Perciformes Carangidae). Nature in Singapore 2:167-169.
  53. Thuiller, W.; Lafourcade, B.; Engler, R. & Araújo, M.B. 2009. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32(3): 369-373.
  54. Tyberghein, L.; Verbruggen, H.; Pauly, K.; Troupin, C.; Mineur, F. & De Clerck, O. 2012. Bio‐ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21(2): 272-281.
  55. Wabnitz, C.C.; Lam, V.W.; Reygondeau, G.; Teh, L.C.; Al-Abdulrazzak, D.; Khalfallah, M.; Pauly, D.; Palomares, M.L.D.; Zeller, D. & Cheung, W.W. 2018. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PloS One 13(5): e0194537.
  56. Zhang, Z.; Xu, S.; Capinha, C.; Weterings, R. & Gao, T. 2019. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators 104: 333-340.