Main Article Content

Abstract

This study aimed to evaluate the antibacterial and biofilm activity of P. aeruginosa isolated from dog wound infections. One hundred samples were collected from February to December 2022 including 28 male and 72 female. Pseudomonas aeruginosa isolates were identified by cultural characteristics, biochemical tests. Thirty P.aeruginosa isolates (30%) were identified. The biofilm producing ability of P. aeruginosa isolates was evaluated by using pre-sterilized 96 well polystyrene microtiter plates. The results showed that out of 20 P. aeruginosa, 1 (5%) was non-adherent and weak, 18 (90%) strong biofilms. The susceptibility test of P. aeruginosa isolates toward 10 different antibiotics were carried out by Kirby-Bauer method. The results revealed that all isolates were resistant to Ciprofloxacin (CIP), Cefotaxime (TX) and Gentamycin (CN) 43.33%,follow by 46.66% resistant to Levofloxacin (LEV), 63.33% to Ceftraxone (CRO), 50% to Azithrofomycin(AZM), 96.66% P. aeruginosa to Ampicillin (AM) and Erythromycin (E), 26.66% to Ceftaziaime (AZ), and 6.66% to Amikacin (AK). The results of the current study showed that the majority of isolates with high resistance to antibiotics had the ability to form biofilms.

Keywords

Pseudomonas aeruginosa Antibacterial Biofilm activity

Article Details

How to Cite
RAHEEM, S. A., & ABDALSHHEED, D. A. (2023). Evaluating the antibacterial and biofilm activity of Pseudomonas aeruginosa isolated from dog’s wound infections. Iranian Journal of Ichthyology, 10(Special Issue 1), 96–104. Retrieved from https://ijichthyol.org/index.php/iji/article/view/922

References

  1. Alfred, E.B. 2005. Microbiological Applications in Laboratory Manuals in General Microbiology. (9thed). McGraw-Hill Company.
  2. Alhazmi, A. 2015. Pseudomonas Aeruginosa-Pathogenesis and Pathogenic Mechanisms. International Journal of Biology 7(2): 44.
  3. AL-Taai, S.A.; Nsaif, R.H. & Almayahi, M.S. 2021. Histomorphological study of esophagus in squirrel (Sciurus anomalus). Biochemical and Cellular Archives 21: 1391-1394.
  4. Al-Taai, S.A.H. & Khalaf, A.S. 2022. Histomorphological study of the tongue in adult starling birds (Sturnus valguris). Iranian Journal of Ichthyology 9(ICAB Special Issue 2022): 116-122.
  5. Alwan, A.H. 2020. Detection of casp-5 gene as inflammatory factor in Iraqi patients with Pseudomonas aeruginosa infections. Pakistan Journal of Biotechnology 17(1): 33-40.
  6. Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; Kačániová, M.; Knøchel, S.; Lourenço, A.; Mergulhão, F.; Meyer, R.L.; Nychas, G.; Simões, M.; Tresse, O. & Sternberg, C. 2017. Critical review on biofilm methods. Critical Reviews in Microbiology 43(3): 313-351.
  7. Baurer, A.W. & Kirbay, W.A.W. 1966. Antibiotic susceptibility testing by standardized single disc method. American Journal of Clinical Pathology 45: 493-496.
  8. Branson D. 1972. Methods in clinical bacteriology manual of tests and procedures. Springfield. Illinois. USA.
  9. Clinical and Laboratory Standards Institute. 2022. Performance Standards for Antimicrobial Susceptibility Testing; M10032h Edition PA: CLSI.
  10. Davis, B.D.; Dulbecco, R.; Eisen, H.N.; Ginsberg, H.S. 1990. Microbio-logy (4thed). Harper and Row Publishers, Inc.
  11. Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E.; Merkens, W.; Mielke, M.; Oltmanns Ross, B.; Rotter, M.; Schmithausen, R.M.; Sonntag, H. & Trautmann, M. 2017. Antibiotic resistance: what is so special about multidrug-resistant gram-negative bacteria? GMS Hygiene and Infection Control 12: 5.
  12. Forbes, B.A.; Sahm, D.F. & Weissfeld, A.S. 2016. Study Guide for Bailey and Scott’s Diagnostic Microbiology-E-Book. Elsevier Health Sciences.
  13. Hayati, M.; Indrawati, A.; Mayasari, N.; Istiyaningsih, I. & Atikah, N. 2019. Molecular detection of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates of chicken origin from East Java, Indonesia. Veterinary World 12(4): 578
  14. Kempf, I.; Jouy, E.; Granier, S.A.; Chauvin, C.; Sanders, P. & Salvat, G. 2015. Impact of antibiotic use in the swine industry by Mary D. Barton. Current Opinion in Microbiology 19: 137-138.
  15. Mahdhi, A.; Leban, N.; Chakroun, I.; Bayar, S.; Mahdouani, K.; Majdoub, H. & Kouidhi, B. 2018. Use of extracellular polysaccharides, secreted by Lactobacillus plantarum and Bacillus spp., as reducing indole production agents to control biofilm formation and efflux pumps inhibitor in Escherichia coli. Microbial Pathogenesis 125: 448-453.
  16. Mahdi, L.H.; Jabbar, H.S. & Auda, I.G. 2019. Antibacterial immunomodulatory and antibiofilm triple effect of Salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. International Journal of Biological Macromolecules 134: 1132-1144.
  17. Mahdi, L.H.; Laftah, A.R.; Yaseen, K.H.; Auda, I.G. & Essa, R.H. 2021. Establishing novel roles of bifidocin LHA, antibacterial, antibiofilm and immunomodulator against Pseudomonas aeruginosa corneal infection model. International Journal of Biological Macromolecules 186: 433-444.
  18. Marques, D.R.A. 2015. Prevalência e Susceptibilidade de Isolados Clínicos de Pseudomonas aeruginosa numa unidade hospitalar de Portugal. Ph.D. Thesis, University of Minho, Braga, Portugal.
  19. Mathur, T.; Singhal, S.; Khan, S.; Upadhyay, D.J.; Fatma, T. & Rattan, A. 2006. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian Journal of Medical Microbiology 24(1): 25-29.
  20. Oliver, A.; Mulet, X.; López-Causapé, C. & Juan, C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updates 2: 41-59.
  21. Oluyombo, O.; Penfold, C.N. & Diggle, S.P. 2019. Competition in Biofilms between Cystic Fibrosis Isolates of Pseudomonas aeruginosa is shaped by R-Pyocins. American Society of Microbiology 10: 1828-1833.
  22. Quinn, P.J.; Carter, M.E.; Markey, B. & Carter, G.R. 1988. Clinical Veterinary Microbiology. Mosby Pub Co. pp: 237-242.
  23. Rosenthal, V.D.; Al-Abdely, H.M.; El-Kholy, A.A.; AlKhawaja, S.; Leblebicioglu, H.; Mehta, Y.; Rai, V.; Hung, N.V.; Kanj, S.S.; Salama, M.F.; Salgado-Yepez, E.; Elahi, N.; Morfin Otero, R.; Apisarnthanarak, A.; De Carvalho, B.M.; Ider, B.E.; Fisher, D.; Buenaflor, M.; Petrov, M.M.; Quesada-Mora, A.M. & Roncancio-Vill, G. E. 2016. International nosocomial infection control consortium report, data summary of 50 countries for 2010-2015: Device-associated module. American Journal of Infection Control 44(12): 1495-1504.
  24. Schroeder, M.; Brooks, B.D. & Brooks, A.E. 2017. The Complex Relationship between Virulence and Antibiotic Resistance. Genes 8(1): 39.
  25. Shaomin, Y. & Guang, W. 2019. Can biofilm be reversed through quorum sensing in Pseudomonas aeruginosa. Frontiers in Microbiology 10: 1582.
  26. Vingopoulou, E.I.; Delis, G.A.; Batzias, G.C.; Kaltsogianni, F. & Koutinas A. 2018. Prevalence and mechanisms of resistance to fluoroquinolones in Pseudomonas aeruginosa and Escherichia coli isolates recovered from dogs suffering from otitis in Greece. Veterinary Microbiology 213: 102-107.
  27. Wu, F.; Ying Y.; Yin M.; Jiang Y.; Wu C.; Qian C.; Chen Q.; Shen K.; Cheng C.; Zu L.; Li, K.; Xu, T.; Bao, Q. & Lu, J. 2019. Molecular characterization of a multidrug-resistant Klebsiella pneumoniae strain R46 isolated from a rabbit. International Journal of Genomics 2019: 5459190.
  28. Zhang, D.; Xia, J.; Xu, Y.; Gong, M.; Zhou, Y.; Xie, L. & Fang, X. 2016. Biological features of biofilm-forming ability of Acinetobacter baumannii strains derived from 121 elderly patients with hospital-acquired pneumonia. Clinical and Experimental Medicine 16(1): 73-80.