Main Article Content

Abstract

This study was conducted to identify and characterize bioactive compounds in two algae Chlorophyta species of Haematococcus pulvialis and Dunatiella saline collected from water bodies in the Karmat Ali area, Basrah Governorate, southern Iraq. The results revealed differences between them in the volatile compounds. A total of 65 peaks of volatile compounds were found in H. pulvialis, as the highest percentage was Hexadecanoic acid, ethyl ester, followed by 8-Heptadecene, n-Hexadecanoic acid, and Hexadecanoic acid, methyl ester. In the D. saline, 55 peaks of volatile compounds were recorded, such as 2 (4H)-Benzofuranone,5,6,7,7a-tetrahydro-4,4,7a-trimethyl-,(R)-, n-Hexadecanoic acid, Oleic Acid, Vitamin E, and other compounds.

Keywords

Bioactive compounds Gaschromatography–mass spectrometry Aquatic ecosystem Metabolites

Article Details

How to Cite
HASHIM, . M. S. . (2023). Identification and characterization of bioactive compounds in two algae species of Haematococcus pulvialis and Dunatiella saline from the waterbodies of Basrah region, Iraq. Iranian Journal of Ichthyology, 10(Special Issue 1), 77–84. Retrieved from https://ijichthyol.org/index.php/iji/article/view/916

References

  1. Bacher, L.; Manassaram-Baptiste, D.; Leprell, R. & Balton, B. 2015. Cyanobacteria and green algae blooms; a review of health and environmental data from the harmful algal bloom related illness surveillance system (HABISS). Toxins 7(4): 1048-1064.
  2. Baracaldo, P.S.; Hayes, P.K. & Blank, C.E. 2005. Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3: 145-165.
  3. Belcher, H. & Swale, E. 1976. A beginner guide to freshwater algae. Iondon. Cult. Ceite to Algae and Frotozoa. pp: 1-48.
  4. Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.; Northcote, P.T. & Prinsep, M.R. 2008. Marine natural product. Natural Product Report 25: 35 -94.
  5. Bullerjahn, G.S. & Post, A.F. 2014. Physiology and molecular biology of aquatic cyanobacteria. Frontiers in Microbiology 5: 359.
  6. Cabrite, M.T.; Vale, C. & Rauter, A.P. 2010. Halogenated compounds from marine algae. Marine Drugs 8(8): 2301-2317.
  7. Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcao, V.R.; Tonon, A.P.; Lopes, C.N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P. & Pinto, E. 2007. Metabolites from algae with economic impact. Comparative Biochemistry and Physiology 146: 60-78.
  8. Demirel, Z.; Yildirim, Z.D.; Tuney, I.; Kesici, K. & Sukatar, A. 2012. Biochemical analysis of some brown seaweeds from the Aegean Sea. Botanica Serbica 36(2): 91-95.
  9. Ghasemi, Y.; Yazdi, M.T.; Shafiee, A.; Amini , M.; Shokravi , S.; Zarrini, G. & Parsiguine, H. 2004. A novel antimicrobial substance from Fischerella ambigua. Pharmaceutical Biology 42(4-5): 318-322.
  10. Hoppe, H.A. 1979. Marine algae and product and constituents in pharmacy in marine algae in pharm.sci (Hoppe, H.A.; Levering, T. & Tanaka, Y., eds.): Watterde Grugter, Berlin. pp: 215-219.
  11. Jha, R.K. & Zi-rong, X. 2004. Biomedical compounds from marine organisms. Marine Drugs 2(3): 123-146.
  12. Kim, H.; Li, L.; Lee, H.; Park, M.; Bilehal, D.; Li,W. & Kim, Y. 2009. Protective effects of Chlorella vulgaris extract on carbon tetrachloride-induced acuteliver injury in mice. Food Science and Biotechnology 18(5): 1186-1192.
  13. Komatsu, T.; Kido, N.; Sugiyama, T. & Yokochi, T. 2013. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green algae, against an in vitro human influenze A virus infection. Immunopharmacology and Immunotoxicology 35(1): 1-7.
  14. Ling, B. 2000. Health impairments arising from drinking water polluted with domestic sewage and excreta in China. Schriftenreihe Verein Wasser Boden Lufthygiene 105: 43-46.
  15. Masayoshi, Y.; Susanne, B.; Keisuke, Y.; Akira, F.; Nobuyuki, M. & Naoharu, W. 2014. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry. The Scientific World Journal ID 289780, 8 p.
  16. Najdenski, H.M.; Gigove, L.G.; Lliev, I.I.; Pilarski, P.S.; Lukavsky, J.; Tsvetkova, I.V.; Ninova, S.M. & Kussovski, V.K. 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science and Technology 48(7): 1533-1540.
  17. Panahi, Y.; Behrad, D.; Narges, J.; Fatemeh, B. & Sahebkar, A.H. 2016. Chlorella vulgaris; amultifunctional dietary supplement with diverse medicinal properties. Current Pharmaceutical Design 22(2): 164-173.
  18. Patel, V.; Berthold, D.; Puranik, P. & Gantar, M. 2015. Screening of cyanobacteria and microalgae for their ability to synthe-size with antibacterial activity. Biotechnology Reports 5: 112-119.
  19. Plazaa, M.; Santoyob, S.; Jaimeb, L.; Garcia-Blairsy Reinac, G.; Herrerob, M.; Senoransb, F.J. & Ibaneza, E. 2010. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis 51: 450-455.
  20. Rios, J.; Recio, M. & Villar, A. 1987. Antimicrobial activity of selected plants employed in the Spanish Mediterranean area. Journal of Ethnopharmacology 21(2): 139-152.
  21. Silva, J.P.; Alves, C.; Pinteus, S.; Silva, J.; Valado, A.; Pedrosa, R. & Pereira, L. 2019. Antioxidant and antitumor potential of wild and IMTA-cultivated Osmundea pinnatifida. Journal of Oceanology and Limnology 37(3): 825-835.
  22. Thajuddin, N. & Subramanian, G. 2005. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science 89: 47-57.