Main Article Content

Abstract

Biofilm formation in microorganisms is one of the most aspects of the food industry, which can be a source of food spoilage and foodborne illness. This study assessed the inhibition activity of green synthesis zinc oxide nanoparticles (ZnONPs) inferred from an extract of ginger (Zingiber officinale) on the biofilm formation gene of Escherichia coli isolated in chicken meat and the expression level of the YjaA gene. The characteristic of the prepared NPs was confirmed by a UV-Visible spectrophotometer, which showed maximum absorption peaks at 370nm. X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) were used to identify the phytosynthesis purity and morphological properties of NPs. Three isolates of E. coli were isolated from clinical samples and formed a strong biofilm in Congo red media. Then, they were subjected to different concentrations of ZnONPs (0.5, 1, and 1.5mg/ml) to determine the effect of ZnO NPs on YjaA gene expression. A two-step (RTqPCR) analysis was used and the results revealed a significant inhibitory effect on gene expression (P>0.05). The mean of gene folding decreased from   1±00   in control to 0.192±0.006 and 0.132±0.006 for 1 and 1.5mg/ml, respectively.

Keywords

Biofilm ZnONPs Zingiber officinale Gene Real time PCR

Article Details

How to Cite
SAEED, A. A., & ABDULWAHID, M. T. (2022). Evaluating the effect of ZnO NPs synthesized by ginger (Zingiber officinale) on Escherichia coli biofilm gene using real-time PCR. Iranian Journal of Ichthyology, 9, 390–396. Retrieved from https://ijichthyol.org/index.php/iji/article/view/827

References

    Abdul Wahid, M.T.; Alobaidi, D.A. & Hamood, M.F. 2017. Evaluation the biochemical quality and bacterial load of the local and imported chicken meat. International Journal of Sciences and Nature 8(2): 257-260.
    Akintelu, S.A.; Olugbeko, F.A.; Folorunso, A.; Oyebamiji, K. & Folorunso, A.S. 2020. Characterization and pharmacological efficacy of silver nanoparticles biosynthesized using the bark extract of Garcinia Kola. Journal of Chemistry, 2876019-2876025.
    Ansari, M.J.; Jasim, S.A. & Taban, T.Z. 2022. Anticancer drug-loading capacity of green synthesized porous magnetic iron nanocarrier and cytotoxic effects against human cancer cell line. Journal of Cluster Science 1-11.
    Applerot, G.; Lellouche, J.; Perkas, N.; Nitzan, Y.; Gedanken, A. & Banin, E. 2012. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. Rsc Advances 2(6): 2314-2321.
    Brayner, R.; FerrariIliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fievet, F. 2006. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters 6(4): 866-870.
    Chendong H.; Romero, N.; Fischer, S.; Dookran, J.; Berger A. & Amber, L.D. 2016. Recent developments in the use of nanoparticles for treatment of biofilms. Journal Nanotechnology Reviews 6(5): 383-404.
    Clermont, O.; Christenson, J.K.; Denamur, E. & Gordon, D.M. 2013. The Clermont Escherichia coli Phylo-Typing Method Revisited: Improvement of Specificity and Detection of New Phylo-Groups. Environmental Microbiology Reports 5(1): 58-65.
    Cramton, S. E., Gerke, C. & Götz, F. 2001. In vitro methods to study staphylococcal biofilm formation. In Methods in enzymology 336: 239-255. Academic Press.
    Olegovich Bokov, D.; Jalil, A.T.; Alsultany, F.H.; Mahmoud, M.Z.; Suksatan, W.; Chupradit, S. & Delir Kheirollahi Nezhad, P. 2022. Ir-decorated gallium nitride nanotubes as a chemical sensor for recognition of mesalamine drug: a DFT study. Molecular Simulation 1-10.
    Dziedzic, A.; Kubina, R.; Wojtyczka, R.D.; Kabala-Dzik, A.; Tanasiewicz, M.; Morawiec, T. & 2013. The antibacterial effect of ethanol extract of polish propolis on mutans streptococci and lactobacilli isolated from saliva. Evidence-Based Complementary and Alternative Medicine 2013: 681891.
    Flemming, H.-C. & Wingender, J. 2018 The biofilm matrix. Nature Reviews Microbiology 8: 623-633.
    Gardea-Torresdey, J.L.; Gomez, J.R.; Peralta-Videa, J.G.; Parsons, H. & Troiani Jose-Yacaman, M. 2003. Alfalfa sprouts: a natural source for the synthesis of silver NPs, Langmuir 19(4): 1357-1361.
    Huldani, H.; Jasim, S.A.; Bokov, D.O.; Abdelbasset, W.K.; Shalaby, M.N.; Thangavelu, L. & Qasim, M.T. 2022. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. International Immunopharmacology 106: 108634.‏
    Janak, A.C.; Sailatha, E. & Gunasekaran, A. 2015. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticlesSpectrochim. Acta Part A: Spectrochimica Acta Part A 144(2015): 17-22,
    Kalpana, V.N. & Rajeswari, V.D. 2018. A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs. Bioinorganic Chemistry and Applications, 2018.
    Khitam, S.S.; Alhtheal, E.D. & Azhar, J.B. 2018. Effect of Zinc Oxide nanoparticalspreparation from Zinc Sulphate (ZnSo4) against gram negative or gram positive microorganisms in vitro. The Iraqi Journal of Veterinary Medicine 42(1): 18-22.
    King, T.; Osmond-McLeod, M.J. & Du, L.L. 2018. Trends in Food Science and Technology Nanotechnology in the food sector and potential applications for the poultry industry. Trends in Food Science and Technology 72: 62-73.
    Lee, C.C.Y. 2011. Genotyping Escherichia coli isolates from duck, goose, and gull fecal samples with phylogenetic markers using multiplex polymerase chain reaction for application in microbial source tracking. Journal of Experimental Microbiology and Immunology 15: 130-135
    Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q. & Lin, M. 2009. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Journal of Applied Microbiology 107(4): 1193-2001.
    Moroboshi, T.; Shiono, T.; Takidouchi, K.; Kato, M.; Kato, N. & Kato, J. 2007. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Applied and Environmental Microbiology 73: 6339-6344.
    Musarrat, J.; Ali, K.; Ansari, M.; Saquib, Q.; Siddiqui, M. & Khan, S. 2015. Green Synthesis of nanoparticles and their role as nano-antibiotics and anti-biofilm agents. Planta Medica 81: OA44.
    Ni, Y.H.; WEI, X.W.; Hong, J.M. & Ye, Y. 2005. Hydrothermal preparation and optical properties of ZnO nanorods. Materials Science and Engineering B 121(2005): 42-47.
    Rode, T.M.; Langsrud, S.; Holck, A. & Møretrø, T. 2007. Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. International Journal of Food Microbiology 116: 372-383.
    Sharma, P.K.; Singh, V. & Ali, M. 2016. Chemical composition and antimicrobial activity of fresh rhizome essential oil of Zingiber officinale Roscoe. Pharmacognosy Journal 8(3).
    Smanthong, N.R.; Tavichakorntrakool, P.; Saisud, V.; Prasongwatana, P.; Sribenjalux, A. Lulitanond, O.; Tunkamnerdthai, C. & Wongkham, P. 2015. Biofilm formation in trimethoprim/ sulfamethoxazole-susceptible and trimethoprim/sulfamethoxazole-resistant uropathogenic Escherichia coli. Asian Pacific Journal of Tropical Biomedicine 5(6): 485-487.
    Stoilova, I.; Krastanov, A.; Stoyanova, A.; Denev, P. & Gargova, S. 2007. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry 102(3): 764-770.
    Wang, H.; Li, C.; Zhao, H.; Li, R. & Liu, J. 2013. Synthesis, characterization, and electrical conductivity of ZnO with different morphologies. Powder Technology 239: 266-271.‏
    Zainab, I.; Mohammed, M. & Qasim, T. 2021. Hormonal profile of men during infertility. Biochemical and Cellular Archives 21(Suppl. 1): 2895-2898.