Main Article Content


This work aimed to determine the antibiotic-resistant patterns of Pseudomonas aeruginosa isolates obtained from clinical, healthy, and environmental samples from some ruminants (cows, and sheep). A total of 200 P. aeruginosa were obtained, and 52 isolates resisted all antibiotics used in the antibiotic sensitivity test. The antibiotic-resistant pattern showed that P. aeruginosa had high resistance (100%) to ampicillin, ceftazidime, gentamycin, ciprofloxacin, piperacillin, tobramycin, imipenem, amikacin, streptomycin, levofloxacin, rifampin, tetracycline, trimethoprim, ofloxacin, carbenicillin, penicillin, and nalidixic acid and had low resistant to colistin and fosfomycin. The plasmid profile was carried out on 12 selected multidrug-resistant (MDR) isolates that were resistant to more classes of antibiotics. All strains were found to possess plasmid bands. Five of the strains had 3 plasmid bands, 4 strains 2 plasmid bands and 3 strains possessed a single band. The sizes of the plasmids among P. aeruginosa isolates were 735, 1400 and 3000bp. All the strains that had plasmids were resistant to gentamycin, ciprofloxacin, piperacillin, tobramycin, imipenem, carbenicillin and tetracycline.


Pseudomonas aeruginosa Antibiotic resistance gene, Ruminant DNA

Article Details

How to Cite
AL-TEMEME, T. M., & ABBAS, B. A. (2022). Antibiotic resistance and plasmid profiling of Pseudomonas aeruginosa isolated from some ruminants in Basrah, Iraq. Iranian Journal of Ichthyology, 9, 334–339. Retrieved from


    Abdalhamed, A.M.; Ghazy, A.A. & Zeedan, G.S.G. 2021. Studies on multidrug-resistance bacteria in ruminants with special interest on antimicrobial resistances genes. Advances in Animal and Veterinary Sciences 9(6): 835-844
    Admosu, T.B.; Ajetumobi, O.; Adegbola, D.H. & Odutayo, I. 2016. Antibiotic susceptibility pattern and analysis of plasmid profiles of Pseudomonas aeruginosa from human. Animal and plant Sources. SpringerPlus 5(1): 1381.
    Al-Ghanim, A.M. & Abbas, B.A. 2021. Detection of Listeria monocytogenes in frozen food using a specific in lB virulence gene. Journal of Physics: Conference Series IOP Publishing. 1879(2): 022011
    Al-Tememe, M.; Tand, K. & Abbas, A.B. 2022. Molecular detection and phylogenetic analysis of Pseudomonas aeruginosa isolated from some infected and healthy ruminants in Basrah, Iraq. Razi Vaccine and Serum Research Institute 77(2): 525-532.
    Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O. & Roisin, S. 2017. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics (Basel) 6(2): E12
    Bikandi, J.; San Millán, R.; Rementeria, A. & Garaizar, J. 2004. In silico analysis of complete bacterial genomes: PCR AFLP-PCR and endonuclease restriction. Bioinformatics 20: 798-799.
    Botelho, J.; Grosso, F. & Peixe, L. 2019. Antibiotic resistance in Pseudomonas aeruginosa– mechanisms, epidemiology and evolution. Drug Resistance Updates 44: 100640.
    CLSI. 2020. Performance Standards for Antimicrobial Susceptibility Testing. 30th Edn CLSI supplement M100. Wayne, PA, USA: Veterinary Antimicrobial standard Test.
    Connie, R.M. & Donald, C.L. 2019. Text Book of Diagnostic Microbiology. 6th edition. Elsevier. pp: 472-473.
    Dapgh, A.N.; Hakim, A.S.; Abouelhag, H.A.; Abdou, A.M. & Elgabry, E.A. 2019. Detection of virulence and multidrug resistance operons in Pseudomonas aeruginosa isolated from Egyptian Baladi sheep and goat, Veterinary World 12(10): 1524-1528.
    Ghazy, A.E.; Alkatsha, A.I.M.; Khaliel, A.S. & Mohamed, N.A. 2015. Phenotypic and genotypic characterization of Pseudomonas Aerogenosa isolated from bovine mastitis. Alexandria Journal of Veterinary Sciences 44: 80-85.
    Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D. & Andersson, D.I. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens 7: e1002158.
    Haenni, M.; Hocquet, D.; Ponsin, C.; Cholley, P.; Guyeux, C. & Madec, J.Y. 2015. Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Veterinary Research 11: 1-5.
    Hassell, J.M.; Ward, M.J.; Muloi. D.; Bettridge, J.M.; Phan, H.; Robinson, T.P. & Begon, M. 2019. Deterministic processes tructure bacterial genetic communities across an urban landscape. Nature Communications 10(1): 1-9.
    Hossain, M.G.; Saha, S.; Rahman, M.M.; Singha, J.K. & Mamun, A.A. 2013. Isolation, Identification and Antibiogram Study of Pseudomonas Aeruginosa from Cattle in Bangladesh. Journal of Veterinary Advances 3(7): 180.
    Jaber, N.N.; Hadi, S.N. & Sayhood, H.M. 2020. Antibacterial activity of laurus nobilus extract against pseudomonas aeruginosa isolated from wounds in sheep after false wool shearin. Basrah Journal of Veterinary Research 17(3): 12.
    Khalid, D. & Abbas, B. 2021.Prevalence, antibiotic susceptibility, and virulence factors of Yersinia enterocolitica isolated from raw milk in Basrah, Iraq. Bulgarian Journal of Veterinary Medicine 24(1): 17-23.
    Khudor, M.H.; Abbas, B.A.; Saeed, B.M. 2012. Molecular detection of enterotoxin (Cyt K) gene and
    antimicrobial susceptibility of Bacillus cereus isolates from milk and milk products. Basrah Journal of Veterinary Research 11(1): 164.
    Livermore, D.M. 2004. Multiple mechanisms of antimicrobial resistance in Ps. aeruginosa: Our worst nightmare? CID. Antimicrobial Resistance 34: 634-664.
    Munita, J.M. & Arias, C.A. 2016. Mechanisms of antibiotic resistance. Virulence Mechanisms of Bacterial Pathogens 22: 481-511.
    Panga, Z.; Raudonisb, R.; Glickc, B.; Jun linabd, T. & Chengab, Z. 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and therapeutic strategies alternative. Biotechnology Advances 37(1): 177-192.
    Rasooli, A.; Nouri, M.; Esmaeilzadeh, S.; Ghadiri, A.; Gharibi, D.; Koupaei, M.J. & Moazeni, M. 2018. Occurrence of purulent mandibular and maxillary osteomyelitis associated with Pseudomonas aeruginosa in a sheep flock in south-west of Iran. Iran Journal of Veterinary Research 19: 133-136.
    Ruiz-Roldán, L.; Rojo-Bezares, B.; de Toro, M.; López, M.; Toledano, P.; Lozano, C.; Chichón, G.; Alvarez-Erviti, L.; Torres, C. & Sáenz, Y. 2020. Antimicrobial resistance and virulence of Pseudomonas spp. among healthy animals: concern about exolysin ExlA detection. Scientific Reports 10(1): 1-11.
    Saha, T.K.; Begum, F.; Kabir, S.L.; Islam, M.S. & Khan, M.S.R. 2019. Characterization of bacterial isolates from skin lesions of sheep, goat and cattle in different rearing conditions. Asian Journal of Medical and Biological Research 5(2): 117-125.
    Shamkhi, G.K. & Khudaier, B.Y. 2020. Isolation and molecular identification of pseudomonas aeruginosa from animals and patients in basrah province. Master thesis, College of Veterinary Medicine, University of Basrah. 96 p.
    Suenaga, H.; Fujihara, H.; Kimura, N.; Hirose, J.; Watanabe, T.; Futagami, T.; Goto, M.; Shimodaira, J. & Furukawa, K. 2017. Insights into the genomic plasticity of Pseudomonas putida KF715, a strain with unique biphenyl-utilizing activity and genome instability properties. Environmental Microbiology Reports 9: 589-598.
    Talukder, A.; Md. Rahman, M.; Chowdhury, H.M.M.; Mobashshera, A.T. & Islam, N.N. 2021. Plasmid profiling of multiple antibiotic-resistant Pseudomonas aeruginosa isolated from soil of the industrial area in Chittagong, Bangladesh. Talukder et al. Beni-Suef University Journal of Basic and Applied Sciences 10: 44.
    Zalewska, M.; Błaz˙ejewska, A.; Czapko, A. & Popowska, M. 2021. Antibiotics and Antibiotic Resistance Genes in Animal Manure-Consequences of Its Application in Agriculture. Frontiers in Microbiology 12: 610656.