Main Article Content

Abstract

This study was aimed to estimate the effect of foliar spraying of the algal extract of Chlorella vulgaris on some vegetative and chemical characteristics of broccoli at a concentration of 2 and 4g l-1. The results showed that the highest averages of plant height, stem diameter, number of leaves, leaf area, total chlorophyll content in leaves, inflorescence diameter, nitrogen concentration, potassium concentration, and total carbohydrates as 20.66cm plant-1, 11.92mm plant-1, 21.66 leaves plant-1, 592.9cm2 plant-1, 0.467mg g-1, 11.30cm, 1.45%, 3.11%, 27.83%, respectively at 4g l-1 of algal extracts compared with the control treatment. While at the concentration 2g l-1 of algal extract, the highest averages in the phosphorous content of the florets disc and iron of 0.694% and 6.61µg g-1 were recorded, respectively. The results revealed significant differences between the treatments at P>0.05.

Keywords

Algal extract Broccoli Chemical characteristics Inflorescence

Article Details

How to Cite
KAREEM, A. O., ALGHANMI, H. A., & JAMEEL, D. A. (2022). Effect of Chlorella vulgaris extract on some vegetative and chemical characteristics of the broccoli plant, Brassica oleracea. Iranian Journal of Ichthyology, 9, 369–376. Retrieved from https://ijichthyol.org/index.php/iji/article/view/814

References

    Abd El Moniem, E.A. & Abd-Allah, A.S.E. 2008. Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevines. American-Eurasian Journal of Agricultural & Environmental Sciences 4(4): 427-433.
    Agwa, O.K.; Ogugbue, C.J. & Williams, E.E. 2017. Field evidence of Chlorella vulgaris potentials as a biofertilizer for Hibiscus esculentus. International Journal of Agricultural Research 12(4): 181-189.
    Al-Musawi, M.A.H.M. 2018. Effect of Foliar Application with Algae Extracts on Fruit Quality of Sour Orange, Citrus aurantium L. Environmental Science and Pollution Research.
    Aly, M.H.A.; El-All, A.; Azza, A.M. & Mostafa, S.S. 2008. Enhancement of sugar beet seed germination, plant growth, performance and biochemical components as contributed by algal extracellular products. Journal of Agricultural Chemistry and Biotechnology 33(12): 8223-8242.
    Amro, S.M. 2015. Effect of algae extract and zinc sulfate foliar spray on production and fruit quality of orange tree cv. Valencia. IOSR Journal of Agriculture and Veterinary Science 8: 51-62.
    Ansari, M.J.; Jasim, S.A.; Taban, T.Z.; Bokov, D.O.; Shalaby, M.N.; Al-Gazally, M.E. & Khatami, M. 2022. Anticancer drug-loading capacity of green synthesized porous magnetic iron nanocarrier and cytotoxic effects against human cancer cell line. Journal of Cluster Science 1-11.
    Barone, V.; Baglieri, A.; Stevanato, P.; Broccanello, C.; Bertoldo, G.; Bertaggia, M. & Concheri, G. 2018. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology 30(2): 1061-1071.
    Borchhardt, N.; Schiefelbein, U.; Abarca, N.; Boy, J.; Mikhailyuk, T.; Sipman, H.J. & Karsten, U. 2017. Diversity of algae and lichens in biological soil crusts of Ardley and King George islands, Antarctica. Antarctic Science 29(3): 229-237.
    Cassan, L.; Jeannin, I.; Lamaze, T. & Morot-Gaudry, J.F. 1992. The effect of the Ascophyllum nodosum extract Goëmar GA 14 on the growth of spinach.
    Charlie, O. 2003. National plant hormones are biostimulants helping plant develop higher plant antioxidant activity for multiple benefits. November–December. Extension Horti.
    Cresser, M.S. & Parsons, J.W. 1979. Sulphuric-Perchloric acid digestion of plant material for the determination of nitrogen, phosphorus, potassium, calcium and magnesium. Analytica Chimica Acta 109: 431-36.
    Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S. & Sampathkumar, P. 2019. The impact of using microalgae as biofertilizer in maize (Zea mays L.). Waste and Biomass Valorization 10(5): 1101-1110.
    Ecochem. 2022. Foliar Applied Fertilizer. http://www.ecochem.com/t_foliar.html.
    Elarroussia, H.; Elmernissia, N.; Benhimaa, R.; El Kadmiria, I.M.; Bendaou, N.; Smouni, A. & Wahbya, I. 2016. Microalgae polysaccharides a promising plant growth biostimulant. Journal of Algal Biomass Utilization (4): 55-63.
    El-din, S.M. & Shimaa, M.H. 2016. The promotive effect of different concentrations of marine algae on spinach plants (Spinacia oleracea L.). Egyptian Journal of Horticulture 43: 109-22.
    Elhafiz, A.; Gaur, A.E.S.S.; Osman, N.H.M. & Lakshmi, T.R. 2015. Chlorella vulgaris and Chlorella pyrenoidosa live cells appear to be promising sustainable biofertilizer to grow rice, lettuce, cucumber and eggplant in the UAE soils. Recent Research in Science and Technology 7: 14-21.
    El-Motty, E.Z.A.; Shahin, M.F.M.; El-Shiekh, M.H. & El-Abd-Migeed, M.M.M. 2010. Effect of algae extract and yeast application on growth, nutritional status, yield and fruit quality of Keitte mango trees. Agriculture and Biology Journal of North America 1(3): 421-429.
    El-Sharony, T.F.; El-Gioushy, S.F. & Amin, O.A. 2015. Effect of foliar application with algae and plant extracts on growth, yield and fruit quality of fruitful mango trees cv. Fagri Kalan. Journal of Horticulture 1-6.
    Faheed, F.A. & Fattah, Z.A. 2008. Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. Journal of Agriculture and Social Sciences (Pakistan).
    Fan, D.; Hodges, D.M.; Critchley, A.T. & Prithiviraj, B. 2013. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Communications in Soil Science and Plant Analysis 44(12): 1873-1884.
    Garcia-Gonzalez, J. & Sommerfeld, M. 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology 28(2): 1051-1061.
    Ghiloufi, W.; Büdel, B. & Chaieb, M. 2017. Effects of biological soil crusts on a Mediterranean perennial grass (Stipa tenacissima L.). Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 151(1): 158-167.
    Gruda, N. 2005. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Critical Reviews in Plant Sciences 24(3): 227-247.
    Haroun, S.A. & Hussein, M.H. 2003. The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian journal of Plant Sciences.
    Horneck, D.A. and Hanson, D. 1998. Handbook of reference methods for plant analysis', CRC Pres. Washington, DC: 157-64.
    Howard, D.D.; Gwathmey, C.O.; Essington, M.E.; Roberts, R.K. & Mullen, M.D. 2001. Nitrogen fertilization of no‐till cotton on loess‐derived soils. Agronomy Journal 93(1): 157-163.
    Huldani, H.; Jasim, S.A.; Bokov, D.O.; Abdelbasset, W.K.; Shalaby, M.N.; Thangavelu, L. & Qasim, M.T. 2022. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. International Immunopharmacology 10: 108634.‏
    Hussain, A. & Hasnain, S. 2012. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World Journal of Microbiology and Biotechnology 28(4): 1459-1466.
    Jackson, M.L. 1973. Soil chemical analysis prentice hall of India. Pvt. Ltd. New Delhi, 498 p.
    Kang, M.S. & Sang-Jun, S. 2004. Chlorella as a functional biomaterial. Korean journal of Biotechnology and Bioengineering.
    Kholssi, R.; Marks, E.A.; Miñón, J.; Montero, O.; Debdoubi, A. & Rad, C. 2019. Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth. Journal of Plant Growth Regulation 38(2): 644-649.
    Kumar, D.; Purakayastha, T.J. & Shivay, Y.S. 2015. Long-term effect of organic manures and biofertilizers on physical and chemical properties of soil and productivity of rice-wheat system. International Journal of Bio-resource and Stress Management (IJBSM) 6(2): 176-181.
    Mackinney, G. 1941. Absorption of light by chlorophyll solutions, Journal of Biological Chemistry 140: 315-22.
    Masojídek, J. & Prášil, O. 2010. The development of microalgal biotechnology in the Czech Republic. Journal of Industrial Microbiology and Biotechnology 37(12): 1307-1317.
    Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.I. & Lee, Y.C. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry 339(1): 69-72.
    Mutale-Joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamlouli, K.; Laila, S. & Hicham, E.A. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Scientific Reports 10(1): 1-12.
    Naidu, B.P.; Jones, G.P.; Paleg, L.G. & Poljakoff-Mayber, A. 1987. Proline analogues in Melaleuca species: response of Melaleuca lanceolata and M. uncinata to water stress and salinity. Functional Plant Biology 14(6): 669-677.
    Olegovich Bokov, D.; Jalil, A.T.; Alsultany, F.H.; Mahmoud, M.Z.; Suksatan, W.; Chupradit, S.; & Delir Kheirollahi Nezhad, P. 2022. Ir-decorated gallium nitride nanotubes as a chemical sensor for recognition of mesalamine drug: a DFT study. Molecular Simulation 1-10.
    Olsen, S.R. & Sommers, L.E. 1982. Phosphorus in AL Page (Ed). Methods of Soil Analysis. Part2. Chemical and Microbiological Properties. Agronomy Mongraphs 9(2).
    Ordog, V. 1999. Beneficial effects of microalgae and cyanobacteria in plant/soil-systems, with special regard to their auxin-and cytokinin-like activity. In International Workshop and Training Course on Microalgal Biology and Biotochnology, Moson–magyarovar, Hungary pp: 43-44.
    Özdemİr, S.; Atakan, S. & Öztekin, G.B. 2016. Production of Chlorella vulgaris and its effects on plant growth, yield and fruit quality of organic tomato grown in greenhouse as biofertilizer. Tarim Bilimleri Dergisi 22: 596-605.
    Page, A.L.; Miller, R.H. & Keeney, D.R. 1982. Methods of Soil Anlysis. II. Chemical and microbiological properties. Soil Science Society of America Journal. Madison Wsconsin, USA.
    Puglisi, I.; Barone, V.; Fragalà, F.; Stevanato, P.; Baglieri, A. & Vitale, A. 2020. Effect of microalgal extracts from Chlorella vulgaris and Scenedesmus quadricauda on germination of Beta vulgaris seeds. Plants 9(6): 675.
    Renuka, N.; Prasanna, R.; Sood, A.; Ahluwalia, A.S.; Bansal, R.; Babu, S. & Nain, L. 2016. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research 23(7): 6608-6620.
    Rioux, L-E.; Turgeon, S.L. & Martin, B. 2007. Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers 69: 530-37.
    Romanowska-Duda, Z.B.; Grzesik, M.; Owczarczyk, A. & Mazur-Marzec, H. 2010. Impact of intra and extracellular substances from Cyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera). 20th international conference on plant growth substance (IPGSA), book of abstracts.
    Sandell, E.B. 1951. Colorimetric determinations of traces of metals (LWW).
    Shaaban, M.M. 2001. Green microalgae water extract as foliar feeding to wheat plants.
    Shanan, N.T. & Higazy, A.M. 2009. Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana. Research Journal of Agriculture and Biological Sciences 5(6): 1162-1168.
    Singh, I.D. & Stoskopf, N.C. 1971. Harvest index in cereals 1. Agronomy Journal 63: 224-26.
    Stirk, W.A.; Novák, O.; Strnad, M. & Van Staden, J. 2003. Cytokinins in macroalgae, Plant growth Regulatio 41: 13-24.
    Wijffels, R.H.; Kruse, O. & Hellingwerf, K.J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology 24(3): 405-413.
    Yoldas, F.; Ceylan, S.; Yagmur, B. & Mordogan, N. 2008. Effects of nitrogen fertilizer on yield quality and nutrient content in broccoli. Journal of Plant Nutrition 31(7): 1333-1343.
    Zainab, I.; Mohammed, M. & Qasim, T. 2021. Hormonal profile of men during infertility. Biochemical and Cellular Archives 21(Suppl.1): 2895-2898.