Main Article Content

Abstract

Naringin is a natural plant compound, found in the juice, flower, and peel of grapefruit and many other citrus fruits. Cyclosporine can affect the male reproductive system in a complex way and may cause male and female infertility when used for a long time. This work aimed to study the role of the nano-naringin compound in reducing the effect of cyclosporine on the efficiency of the reproductive system of male rats. The study conducted by 32 adult rats for 60 days that were divided randomly into four groups. Control group (C) was administrated by distilled water only, (T1) received CsA at the dose of 15mg/kg/day, (T2) CsA administered for 30 days, then nano-naringin at a dose 40mg/kg/day for 30 days, (T3) cyclosporine and nano-naringin have been administered simultaneously for 60 days. No significant differences were observed in the weight of the testis of rats treated with CsA, in contrast to the epididymis. The results sjowed a significant decrease in the level of gene expression of DDX3Y and LHr genes in testicular tissues of rats treated with CsA. CsA administration to rats led to a significant decrease in the level of Testosterone hormone and an increases in the level of luteinizing hormone. CsA treatment caused a significant increase in MDA level and significant decreases in GSH level and CAT activities when compared with the control group. The above parameters were improved to a near-normal level by the combined administration of nano-naringin. The results indicate a curative effect of nanonaringin as an antioxidant that attenuates the side effects of CsA on testicular injury.

Keywords

Cestode Echinococcosis Taenia ELISA

Article Details

How to Cite
KHADHIM, H. A., & KHADHIM, W. M. (2022). Effect of Naringin nanocomposite in improving reproductive system efficiency in white male rats exposed to cyclosporine-induced oxidative stress. Iranian Journal of Ichthyology, 9, 360–368. Retrieved from https://ijichthyol.org/index.php/iji/article/view/813

References

    Budel, R.G.; da Silva, D.A.; Moreira, M.P.; Dalcin, A.J.F.; da Silva, A.F.; Nazario, L.R. & da Silva, R.S. 2020. Toxicological evaluation of naringin-loaded nanocapsules in vitro and in vivo. Colloids and Surfaces B: Biointerfaces 188: 110754.‏
    ‏ Khan, M.; Shobha, J.C.; Mohan, I.K.; Rao Naidu, M.U.; Prayag, A. & Kutala, V.K. 2006. Spirulina attenuates cyclosporine‐induced nephrotoxicity in rats. Journal of Applied Toxicology: An International Journal 26(5): 444-451.
    Akondi, R.B.; Akula, A. & Challa, S.R. 2011a. Protective Effects of rutin and naringin on gentamycin induced testicular oxidative stress. European Journal of General Medicine 8(1).
    Aksu, E.H.; Kandemir, F.M. & Küçükler, S. 2018. Naringin'in erkek ratlarda methotreaxte indüklü testis apoptosisi ve otofajisi üzerine oksidatif stresi azaltmak yoluyla koruyucu etkisi. Fırat Üniversitesi Sağlık Bilimleri Dergisi 32(3): 179-183.
    Aksu, E.H.; Özkaraca, M.; Kandemir, F.M.; Ömür, A.D.; Eldutar, E.; Küçükler, S. & Çomaklı, S. 2016. Mitigation of paracetamol‐induced reproductive damage by chrysin in male rats via reducing oxidative stress. Andrologia 48(10): 1145-1154.
    Alboghobeish, S.; Mahdavinia, M.; Zeidooni, L.; Samimi, A.; Oroojan, A.A.; Alizadeh, S. & Khorsandi, L. 2019. Efficiency of naringin against reproductive toxicity and testicular damages induced by bisphenol A in rats. Iranian Journal of Basic Medical Sciences 22(3): 315.
    Ali, M.M.; Ahmed, O.M.; Nada, A.S.; Abdel-Reheim, E.S. & Amin, N.E. 2020. Possible protective effect of naringin (a citrus bioflavonoid) against kidney injury induced by irradiation and/or iron overload in male rats. International Journal of Radiation Research 18(4): 673-684.
    Alozhy, M.A.A.; Al-Sa’aidi, J.A. & AlKalby, J.M. 2019. Hepatoprotective effect of silymarin in cyclosporine-induced oxidative stressed male rats. Basrah Journal of Veterinary Research 18: 392-409.
    Amor, K.T.; Ryan, C. & Menter, A. 2010. The use of cyclosporine in dermatology: part I. Journal of the American Academy of Dermatology 63(6): 925-946.
    Ansari, M.J.; Jasim, S.A.; Taban, T.Z.; Bokov, D.O.; Shalaby, M.N.; Al-Gazally, M.E. & Khatami, M. 2022. Anticancer Drug-Loading Capacity of Green Synthesized Porous Magnetic Iron Nanocarrier and Cytotoxic Effects Against Human Cancer Cell Line. Journal of Cluster Science. (In Press)
    Arafah, A.; Rehman, M.U.; Mir, T.M.; Wali, A.F.; Ali, R.; Qamar, W.; Khan, R.; Ahmad, A.; Aga, S.S.; Alqahtani, S. & Almatroudi, N.M. 2020. Multi-Therapeutic Potential of Naringenin (4′, 5, 7-Trihydroxyflavone): Experimental Evidence and Mechanisms. Plants 9(12): 1784.
    Bacanlı, M.; Başaran, A.A. & Başaran, N. 2015. The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food and Chemical Toxicology 81: 160-170.
    Barbarino, J. M.; Staatz, C.E.; Venkataramanan, R.; Klein, T.E. & Altman, R.B. 2013. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenetics and Genomics 23(10): 563.
    Blanco-Rodríguez, J. & Martinez-Garcia, C. 1997. Apoptosis pattern elicited by oestradiol treatment of the seminiferous epithelium of the adult rat. Reproduction 110(1): 61-70.
    Cavallini, L.; Malendowicz, L.K.; Mazzocchi, G.; Belloni, A.S. & Nussdorfer, G.G. 1989. Effects of prolonged cyclosporine-A treatment on the Leydig cells of the rat testis. Virchows Archiv B 58(1): 215-220.
    Chandramohan, Y. & Parameswari, C.S. 2013. Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: Involvement of hemeoxygenase-1. Pharmacological Reports 65(5): 1336-1344.
    Chen, R.; Qi, Q.L.; Wang, M.T. & Li, Q.Y. 2016. Therapeutic potential of naringin: an overview. Pharmaceutical Biology 54(12): 3203-3210.
    ‏Duttagupta, I.; Ghosh, K.C. & Sinha, S. 2016. Synthetic studies toward nonribosomal peptides. Studies in Natural Products Chemistry 48: 29-64.
    Freitas, K.M.; Monteiro, J.C.; Gomes, M.L.; Taboga, S.R. & Dolder, H. 2012. Cyclosporin A causes impairment of the ventral prostate tissue structure of Wistar rats. Human and Experimental Toxicology 31(12): 1262-1270.
    Freitas, K.M.; Monteiro, J.C.; Gomes, M.L.; Taboga, S.R. & Dolder, H. 2013. Heteropterys tomentosa (A. Juss.) infusion counteracts Cyclosporin a side effects on the ventral prostate. BMC Complementary and Alternative Medicine 13(1): 30.‏
    Guzman-Villanueva, D.; El-Sherbiny, I.M.; Herrera-Ruiz, D. & Smyth, H.D. 2013. Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed Research International 2013.
    Hadwan, M.H. & kadhum Ali, S. 2018. New spectrophotometric assay for assessments of catalase activity in biological samples. Analytical Biochemistry 542: 29-33.
    Hudson, N.M.C. 1999. Rethinking cystic fibrosis pathology glutathione system dysfunction and glutathione augmentation theory. Journal of Pedia 19: 129.
    Huldani, H.; Jasim, S.A.; Bokov, D.O.; Abdelbasset, W.K.; Shalaby, M.N.; Thangavelu, L. & Qasim, M.T. 2022. Application of extracellular vesicles derived from mesenchymal stem cells as potential therapeutic tools in autoimmune and rheumatic diseases. International Immunopharmacology 106: 108634.‏
    Jang, Y.; Kim, S.W.; Oh, J.; Hong, G.S.; Seo, E.K.; Oh, U. & Shim, W.S. 2013. Ghrelin receptor is activated by naringin and naringenin, constituents of a prokinetic agent Poncirus fructus. Journal of Ethnopharmacology 148(2): 459-465.
    Jo, C. & Ahn, D.U. 1998. Fluorometric analysis of 2-thiobarbituric acid reactive substances in Turkey. Poultry Science 77(3): 475-480.
    Kaminski, H.J. 2008. Cyclosporine is derived from a fungus and is a cyclic undecapeptide with actions directed exclusively on T cells. Myasthenia Gravis and Related Disorders.‏
    Kanno, S.I.; Shouji, A.; Asou, K. & Ishikawa, M. 2003. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. Journal of Pharmacological Sciences 92(2): 166-170.
    Kant, V.; Kumar Verma, P. & Kumar, P. 2009. Immunosuppressive drug therapy: An overview. Journal of Immunology and Immunopathology 11(2): 21-32.
    Krueger, B.A.; Trakshel, G.M.; Sluss, P.M. & Maines, M.D. 1991. Cyclosporin-mediated depression of luteinizing hormone receptors and heme biosynthesis in rat testes: a possible mechanism for decrease in serum testosterone. Endocrinology 129(5): 2647-2654.
    Lin, Y.; Zhang, J.; Lei, W.; Li, M.; Zhang, Z.; Lu, Y. & Chen, Y. 2019. Diltiazem aggravates testicular function impairment induced by cyclosporine A or tacrolimus in unilateral nephrectomised rats. Andrologia 51(5): e13251.
    Luddi, A.; Margollicci, M.; Gambera, L.; Serafini, F.; Cioni, M.; De Leo, V. & Piomboni, P. 2009. Spermatogenesis in a man with complete deletion of USP9Y. New England Journal of Medicine 360(9): 881-885.
    Maatouk, M.; Mustapha, N.; Mokdad-Bzeouich, I.; Chaaban, H.; Ioannou, I.; Ghedira, K. & Chekir-Ghedira, L. 2018. Heated naringin mitigate the genotoxicity effect of Mitomycin C in BALB/c mice through enhancing the antioxidant status. Biomedicine & Pharmacotherapy 97: 1417-1423.
    Mahdi, W. T. 2018. Histological and Molecular study for detection of Inh-b genes in Male rats treated with Monosodium Glutamate. Journal of Pharmaceutical Sciences and Research 10(12): 3317.
    Monteiro, J.C.; Predes, F.S.; Matta, S.L. & Dolder, H. 2008. Heteropterys aphrodisiaca infusion reduces the collateral effects of cyclosporine A on the testis. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology: Advances in Integrative Anatomy and Evolutionary Biology 291(7): 809-817.
    Nallamuthu, I.; Ponnusamy, V.; Smruthi, M.R. & Khanum, F. 2021. Formulation of naringin encapsulation in zein/caseinate biopolymers and its anti-adipogenic activity in 3T3-L1 pre-adipocytes. Journal of Cluster Science 32(6): 1649-1662.
    Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M. & Issaabadi, Z. 2019. Chapter 1- An Introduction to Nanotechnology. Interface Science and Technology 28: 1-27.
    Olegovich Bokov, D.; Jalil, A.T.; Alsultany, F.H.; Mahmoud, M.Z.; Suksatan, W.; Chupradit, S. & Delir Kheirollahi Nezhad, P. 2022. Ir-decorated gallium nitride nanotubes as a chemical sensor for recognition of mesalamine drug: a DFT study. Molecular Simulation 1-10.
    Papasani, V.M.R.; Hanumantharayappa, B. & Annapurna, A. 2014. Cardioprotective effect of naringin against doxorubicin induced cardiomyopathy in rats. Indo American Journal of Pharmaceutical Research 4(5): 2593-2598.
    Rajadurai, M. & Prince, P. 2006. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology 228(2-3): 259-268.
    Rajfer, J.; Sikka, S.C.; Lemmi, C. & Koyle, M.A. 1987. Cyclosporine inhibits testosterone biosynthesis in the rat testis. Endocrinology 121(2): 586-589.
    Ravula, A.R. & Yenugu, S. 2021. Effect of long‐term treatment with a mixture of pyrethroids on the expression of genes that govern male germ cell production in rats. Journal of Biochemical and Molecular Toxicology 35(2): e22654.
    Schiefer, W.C. 1980. Statistics for the biological sciences.2nd edition. Addison. Wesley publComp, California, London.
    Sedlak, J. & Lindsay, R.H. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry 25: 192-205.‏
    Seethalakshmi, L.; Flores, C.; Khauli, R.B.; Diamond, D.A. & Menon, M. 1990. Evaluation of the effect of experimental cyclosporine toxicity on male reproduction and renal function. Reversal by concomitant human chorionic gonadotropin administration. Transplantation 49(1): 17-19.
    Sigalet, D.L.; Kneteman, N.M. & Thomson, A.B. 1992. Reduction of nutrient absorption in normal rats by cyclosporine. Transplantation 53(5): 1103-1107.
    Singh, Z.; Sharma, S. & Kaur, A. 2019. Ameliorative nature of flavonoid naringin: A comprehensive review of antitoxic effects. Trends in Phytochemical Research 3(1): 67-76.‏
    Wang, X.; Wang, M.; Dong, W.; Li, Y.; Zheng, X.; Piao, F. & Li, S. 2013. Subchronic exposure to lead acetate inhibits spermatogenesis and downregulates the expression of Ddx3y in testis of mice. Reproductive Toxicology 42: 242-250.
    Wang, Y.; Wu, H.; Chen, P.; Su, W.; Peng, W. & Li, P. 2021. Fertility and early embryonic development toxicity assessment of naringin in Sprague-Dawley rats. Regulatory Toxicology and Pharmacology 123: 104938.‏
    Yousef, M.I.; El-Demerdash, F.M. & Radwan, F.M. 2008. Sodium arsenite induced biochemical perturbations in rats: Ameliorating effect of curcumin. Food and Chemical Toxicology 46(11): 3506-3511.
    Zaidi, S.K.; Young, D.W.; Javed, A.; Pratap, J.; Montecino, M.; Van Wijnen, A. & Stein, G.S. 2007. Nuclear microenvironments in biological control and cancer. Nature Reviews Cancer 7(6): 454-463.
    Zainab, I.; Mohammed, M. & Qasim, T. 2021. Hormonal profile of men during infertility. Biochemical and Cellular Archives 21(Suppl. 1): 2895-2898.
    Zeng, X.; Yao, H.; Zheng, Y.; He, Y.; He, Y.; Rao, H. & Su, W. 2020. Tissue distribution of naringin and derived metabolites in rats after a single oral administration. Journal of Chromatography B 1136: 121846.‏
    Zhong, Z.; Arteel, G.E.; Connor, H.D.; Yin, M.; Frankenberg, M.V.; Stachlewitz, R.F. & Thurman, R.G. 1998. Cyclosporin A increases hypoxia and free radical production in rat kidneys: prevention by dietary glycine. American Journal of Physiology-Renal Physiology 275(4): 595-604.‏