The use of otolith morphometry as an indicator for the size increase of Periophthalmodon septemradiatus (Teleostei: Gobiiformes) living along the Bassac River, Vietnam

Quang Minh DINH, Thanh Minh NGUYEN, Lam Thanh TRAN

Abstract

This paper contributed data on otoliths morphometry and their relationships with the size of Periophthalmodon septemradiatus. A total of 135 specimens (86 males and 49 females) were collected from the five sites in branches of the Bassac River, Vietnam. Length, width, and weight of left otoliths were similar to those of the right otoliths. These otolith parameters of did not change with gender, but vary significantly in five sites, reaching the highest point in the upstream of Bassac River in Binh Duc, Long Xuyen, An Giang where fish total length and body weight reached the highest values. The otolith length, width, and weight had strong relationships with fish total length and body weight due to the high value of determination coefficients (r2). Among the three dimensions of otoliths, otolith length was the most positive relationship with fish size since r2 of this regression reaches the highest value. The results suggested that otolith dimensions could be used for fish size determination.

Keywords

Otolith and fish size relationship, Mekong Delta, mudskipper, Vietnam.

Full Text:

PDF

References

de Assis, D.A.S.; Santos, J.D.A.; de Moraes, L. E. & Santos, A.C.D.A. 2018. Biometric relation between body size and otolith size of seven commercial fish species of the south‐western Atlantic. Journal of Applied Ichthyology 34(5): 1176-1179.

Bani, A.; Poursaeid, S. & Tuset, V.M. 2013. Comparative morphology of the sagittal otolith in three species of south Caspian gobies. Journal of Fish Biology 82: 1321-1332.

Battaglia, P.; Malara, D.; Romeo, T. & Andaloro, F. 2010. Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Scientia Marina 74: 605-612.

Berra, T.M. & Aday, D.D. 2004. Otolith description and age-and-growth of Kurtus gulliveri from northern Australia. Journal of Fish Biology 65: 354-362.

Bhatt, N.Y.; Patel, S.J.; Patel, D.A. & Patel, H.P. 2009. Burrowing activities of goby fish in the recent intertidal mud flats along the Navinal coast, Kachchh, Western India. Journal of the Geological Society of India 74: 515-530.

Campana, S.E. 2004. Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. NRC Research Press.

Dehghani, M.; Kamrani, E.; Salarpouri, A. & Sharifian, S. 2016. Otolith dimensions (length, width), otolith weight and fish length of Sardinella sindensis (Day, 1878), as index for environmental studies, Persian Gulf, Iran. Marine Biodiversity Records 9: 44.

Dinh, Q.M.; Qin, J.G. & Tran, D.D. 2015. Population and age structure of the goby Parapocryptes serperaster (Richardson, 1864; Gobiidae: Oxudercinae) in the Mekong Delta. Turkish Journal of Fisheries and Aquatic Sciences 15: 345-357.

Dinh, Q.M.; Tran, T.L. & Nguyen, T.K.T. 2018a. The relative gut length and gastro-somaticindexes of the mudskipper Periophthalmodon septemradiatus (Hamilton, 1822) from the Hau River. VNU Journal of Science: Natural Sciences and Technology 34: 75-83.

Dinh, Q.M.; Tran, T.L. & Nguyen, T.Y.N. 2018b. The flexibility of morphometric and meristic measurements of Periophthalmodon septemradiatus (Hamilton, 1822) in Hau river. Journal of Science and Technology 187: 81-90.

Dinh, Q.M.; Tran, L.T.; Tran, T.M.T.; To, K.D.; Nguyen, T.T.K. & Tran, D.D. 2019. Variation in diet composition of the mudskipper Periophthalmodon septemradiatus from Hau River, Vietnam. Bulletin of Marine Science 95: 1-14.

Dinh, Q.M.; Tran, L.T.; Ngo, N.C.; Pham, T.B. & Nguyen, T.T.K. 2020. Reproductive biology of the unique mudskipper Periophthalmodon septemra-diatus living from estuary to upstream of the Hau River. Acta Zoologica 101: 206-217.

Fatnassi, M.; Khedher, M.; Trojette, M.; El Houda Mahouachi, N.; Chalh, A.; Quignard, J.-P. & Trabelsi, M. 2017. Biometric data and contour shape to assess sexual dimorphism and symmetry of the otolith pairs of Trachinus draco from north Tunisia. Cahiers De Biologie Marine 58: 261-268.

Ghanbarifardi, M.; Gut, C.; Gholami, Z.; Esmaeili, H. R.; Gierl, C. & Reichenbacher, B. 2020. Possible link between the structure of otoliths and amphibious mode of life of three mudskipper species (Teleostei: Gobioidei) from the Persian Gulf. Zoology in the Middle East 66(4): 311-320.

Giménez, J.; Manjabacas, A.; Tuset, V.M. & Lombarte, A. 2016. Relationships between otolith and fish size from Mediterranean and north-eastern Atlantic species to be used in predator–prey studies. Journal of Fish Biology 89: 2195-2202.

Granadeiro, J.P. & Silva, M.A. 2000. The use of otoliths and vertebrae in the identification and size-estimation of fish in predator-prey studies. Cybium 24: 383-393.

Hamer, P.A. & Jenkins, G.P. 2007. Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71: 1035-1055.

Jawad, L.; Ambuali, A.; Al-Mamry, J. & Al-Busaidi, H. 2011. Relationships between fish length and otolith length, width and weight of the Indian mackerel Rastrelliger kanagurta (Cuvier, 1817) collected from the Sea of Oman. Croatian Journal of Fisheries 69: 51-61.

Khaironizam, M. & Norma-Rashid, Y. 2003. First record of the mudskipper, Periophthalmodon septemradiatus (Hamilton) (Teleostei: Gobiidae) from Peninsular Malaysia. Raffles Bulletin of Zoology 51: 97-100.

Le, T.; Nguyen, M.T.; Nguyen, V.P.; Nguyen, D.C.; Pham, X.H.; Nguyen, T.S.; Hoang, V.C.; Hoang, P.L.; Le, H. & Dao, N.C. 2006. Provinces and City in the Mekong Delta. Education Publishing House, Ha Noi.

Matic-Skoko, S.; Ferri, J.; Skeljo, F.; Bartulovic, V.; Glavic, K. & Glamuzina, B. 2011. Age, growth and validation of otolith morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae). Fisheries Research 112: 52-58.

Megalofonou, P. 2006. Comparison of otolith growth and morphology with somatic growth and age in young-of-the-year bluefin tuna. Journal of Fish Biology 68: 1867-1878.

Mehanna, S.F.; Jawad, L.A.; Ahmed, Y.A.; Abu El-Regal, M.A. & Dawood, D. 2016. Relationships between fish size and otolith measurements for Chlorurus sordidus (Forsskål, 1775) and Hipposcarus harid (Forsskål, 1775) from the Red Sea coast of Egypt. Journal of Applied Ichthyology 32: 356-358.

Metin, G.; Ilkyaz, A.T.; Soykan, O. & Kinacigil, H.T. 2011. Age, growth and reproduction of four-spotted goby, Deltentosteus quadrimaculatus (Valenciennes, 1837), in İzmir Bay (central Aegean Sea). Turkish Journal of Zoology 35: 711-716.

Motamedi, M.; Teimori, A. & Iranmanesh, A. 2021. Ontogenetic pattern, morphological sexual and side dimorphism in the saccular otolith of a scaleless killifish Aphanius furcatus (Teleostei: Aphaniidae). Acta Zoologica 102(1): 38-50.

Murdy, E. 2011. Systematics of Oxudercinae. In Patzner, R.A.; Tassell, J.L.V.; Kovacic, M. & Kapoor, B.G. (eds.), The Biology of Gobies. Science Publishers, New Hampshire, United States. pp: 99-106.

Murdy, E.O. 1989. A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae, Oxudercinae). Australian Museum Journal 11: 93.

Murdy, E.O. & Jaafar, Z. 2017. Taxonomy and systematics review. In Jaafar, Z. & Murdy, E.O. (eds.), Fishes Out of Water: Biology and Ecology of Mudskippers. CRC Press, Boca Raton. pp: 1-36.

Oliveira, R.R.D.S.; Andrade, M.C.; Machado, F.S.; Cunha, É.J.S.; Freitas, F.S.D.; Klautau, A.G.C.D.M.. & Saint-Paul, U. 2019. Biometric relationships between body size and otolith size in 15 demersal marine fish species from the northern Brazilian coast. Acta Amazonica 49(4): 299-306.

Park, J.M.; Gaston, T.F.; Riedel, R. & Williamson, J.E. 2018. Biometric relationships between body and otolith measurements in nine demersal fishes from north-eastern Tasmanian waters, Australia. Journal of Applied Ichthyology 34: 801-805.

Pino, C.A.; Cubillos, L.A.; Araya, M. & Sepúlveda, A. 2004. Otolith weight as an estimator of age in the Patagonian grenadier, Macruronus magellanicus, in central-south Chile. Fisheries Research 66: 145-156.

Popper, A.; Ramcharitar, J. & Campana, S. 2005. Why Otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research, 56: 497-504.

Popper, A.N. & Lu, Z. 2000. Structure–function relationships in fish otolith organs. Fisheries Research 46: 15-25.

Purrafee Dizaj, L.; Esmaeili, H.R. & Teimori, A. 2020. Comparative otolith morphology of clupeids from the Iranian brackish and marine resources (Teleostei: Clupeiformes). Acta Zoologica, 96(3): 328-334.

Reichenbacher, B. & Sienknecht, U. 2001. Allopatric divergence and genetic diversity of recent Aphanius iberus and fossil Prolebias meyeri (Teleostei, Cyprinodontidae) from southwest and western Europe, as indicated by otoliths. Geobios 34: 69-83.

Reichenbacher, B.; Kamrani, E.; Esmaeili, H.R. & Teimori, A. 2009. The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: Evidence from otolith morphology. Environmental Biology of Fishes 86: 507-521.

Rodríguez Mendoza, R. 2006. Otoliths and their applications in fishery science. Croatian Journal of Fisheries: Ribarstvo 64: 89-102.

Sadeghi, R.; Esmaeili, H. R.; Zarei, F. & Reichenbacher, B. 2020. Population structure of the ornate goby, Istigobius ornatus (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR. Environmental Biology of Fishes 103(10): 1217-1230.

Santana, H.S.D.; Rodrigues, A.C. & Minte-Vera, C.V. 2018. Otolith morphometry provides length and weight predictions and insights about capture sites of Prochilodus lineatus (Characiformes: Prochilodontidae). Neotropical Ichthyology 16 (4).

Stransky, C.; Baumann, H.; Fevolden, S.-E.; Harbitz, A.; Høie, H.; Nedreaas, K.H.; Salberg, A.-B. & Skarstein, T.H. 2008. Separation of Norwegian coastal cod and Northeast Arctic cod by outer otolith shape analysis. Fisheries Research 90: 26-35.

Takasuka, A.; Oozeki, Y.; Aoki, I.; Kimura, R.; Kubota, H.; Sugisaki, H. & Akamine, T. 2008. Growth effect on the otolith and somatic size relationship in Japanese anchovy and sardine larvae. Fisheries Science 74: 308-313.

Tarkan, A.S.; Gursoy Gaygusuz, C.; Gaygusuz, O. & Acipinar, H. 2007. Use of bone and otolith measures for size-estimation of fish in predator-prey studies. Folia Zoologica 56: 328.

Tran, D.D.; Shibukawa, K.; Nguyen, T.P.; Ha, P.H.; Tran, X.L.; Mai, V.H. & Utsugi, K. 2013. Fishes of Mekong Delta, Vietnam. Can Tho University Publisher, Can Tho.

Tuset, V.M.; Rosin, P.L. & Lombarte, A. 2006. Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research 81: 316-325.

Waessle, J.A.; Lasta, C.A. & Favero, M. 2003. Otolith morphology and body size relationships for juvenile Sciaenidae in the Río de la Plata estuary (35-36 S). Scientia Marina 67: 233-240.

Refbacks

  • There are currently no refbacks.