Main Article Content


New amide compounds have been produced from reaction of the phthalimide derivatives (7 and 13) with various acids hydrizdes (1-5) in absolute ethanol. The structures of the prepared amides have been examined by FT-IR and 1HNMR. Furthermore, these amides have been evaluated for antibacterial activity against three pathogenic bacteria, Staphylococcus aureu, Escherichia coli, and Bacillus spp. The resulting amides showed inhibitory action against tested organism.


Amide analogues, Amide compounds, Amide formation, Antibacterial activity.

Article Details

How to Cite
MOUSA, E. F., KHAMMAS, S. J., & HAMED, A. H. (2022). Synthesis and characterization of some new amide compounds derived from phthalimide derivatives and their biological activity. Iranian Journal of Ichthyology, 9, 340–347. Retrieved from


    Adam, P.Z.; Jacek, L.K. & Wojciech, T.M. 2020, "Microwave-Assisted Catalytic Method for a Green Synthesis of Amides Directly from Amines and carboxylic acids. Molecules 25: 1761.
    Al‐Zoubi, R.M.; Marion, O. & Hall, D.G. 2008. Direct and waste‐free amidations and cycloadditions by organocatalytic activation of carboxylic acids at room temperature. Angewandte Chemie International Edition 47: 2876-2879.
    Antonella, L.; Jessica, B.; Emilia L.; Alessandra, C.; Marianna, G. & Angelo L. 2017. Formation of amides: one- pot condensation of carboxylic acids and amines mediated by TiCl4. Chemistry Central Journal 11: 87.
    Battaglia, S.; Boldrini, E.; Da Settimo, F.; Dondio, G. & La Motta, C. 1999. Indole amide derivatives: synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. European Journal of Medicinal Chemistry 34: 93-105.
    Beck, B.; Hess, S. & Dömling, A. 2010. One-pot synthesis and biological evaluation of aspergillamides and analogues. Bioorganic & medicinal chemistry letters 10: 1701-1715.
    Boonya-Udtayan, S.; Eno, M.; Ruchirawat, S.; Mahidol, C. & Thasana, N. 2012. Palladium-catalyzed intramolecular C-H amidation: synthesis and biological activities of indolobenzazocin-8-ones. Tetrahedron 68: 10293-10301.
    Galewicz-Walesa, K. & Pachuta-Stec, A. 2003. The synthesis and properties of N-substituted amides of 1-(5-methylthio-1, 2, 4-triazol-3-yl) - cyclohexane-2-carboxylic acid, Medical Academy in Lublin 9: 118-125.
    Graybill, T.L.; Ross, M.J.; Gauvin, B.R.; Gregory, J.S.; Harris, A.L.; Ator, M.A.; Rinker, J.M. & Dolle, R.E. 1996. Synthesis and evaluation of azapeptide-derived inhibitors of serine and cysteine proteases. Bioorganic & Medicinal Chemistry Letters 2(11): 1375-1380.
    Greenberg, A. 2000. The amide linkage: Structural significance in chemistry, biochemistry, and materials science. John Wiley & Sons.
    Greger, H.; Zechner, G.; Hofer, O.; Hadacek, F. & Wurz, G. 1993. Sulphur-containing amides from Glycosmis species with different antifungal activity. Phytochemistry 34: 175-179.
    Hegab, M.I.; Abdel‐Fattah, A.S.M.; Yousef, N.M.; Nour, H.F.; Mostafa, A.M. & Ellithey, M. 2007. Synthesis, X‐ray Structure, and Pharmacological Activity of Some 6, 6‐Disubstituted Chromeno [4, 3‐b]‐and Chromeno‐[3, 4‐c]‐quinolines. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry 340(8): 396-403.
    Hranjec, M.; Sović, I.; Ratkaj, I.; Pavlović, G.; Ilić, N.; Valjalo, L.; Pavelić, K.; Pavelić, S.K. & Karminski-Zamola, G. 2013. Antiproliferative potency of novel benzofuran2-carboxamides on tumour cell lines: cell death mechanisms and determination of crystal structure. European Journal of Medicinal Chemistry 59: 111-119.
    Huczyński, A.; Janczak, J.; Stefańska, J.; Antoszczak, M. & Brzezinski, B. 2012. Synthesis and antimicrobial activity of amide derivatives of polyether antibiotic-salinomycin. Bioorganic & medicinal Chemistry Letters 22: 4697-4702.
    Kaur, G.; Vadekeetil A.; Harjai, K. & Singh, V. 2015. Synthesis of α-acylamino-amidebis (indolyl) methane heterocycles by sequential one pot condensation-Ugi/Passerini reactions and their antimicrobial evaluation. Tetrahedron letters 56: 4445-4450.
    Koz᾽minykh, V.O. 2006. Synthesis and biological activity of substituted amides and hydrazides of 1, 4-dicarboxylic acids. Pharmaceutical Chemistry Journal 40(1): 8-17.
    Moise, M.; Sunel, V.; Profire, L.; Popa, M. & Lionte, C.A. 2008. Synthesis and antimicrobial activity of some new (sulfon-amidophenyl)-amide derivatives of N-(4-nitrobenzoyl)-phenylglycine and N-(4-nitrobenzoyl)-phenylalanine. Farmacia-Bucuresti 56(3): 283.
    Narasimhan, B.; Belsare, D.; Pharande, D.; Mourya, V. & Dhake, A. 2004. Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry 39: 827-834.
    Peña, S.; Scarone, L.; Manta, E.; Stewart, L.; Yardley, V.; Croft, S. & Serra, G. 2012. Synthesis of a microcystis aeruginosa predicted metabolite with antimalarial activity. Bioorganic & Medicinal Chemistry Letters 22: 4994-4997.
    Rachel, M.L.; Pavel, S. & Tom, D.S. 2013. Direct Synthesis of Amides from carboxylic acids and Amines using B (OCH2CF3)3 .The Journal of Organic Chemistry 78(9): 4512-4523.
    Rajput, P. & Sharma, A. 2018. Synthesis and biological importance of amide analogues. Journal of Medicinal Chemistry 2(1):22-31.
    Siddiqui, N.; Alam, M. & Ahsan, W. 2008. Synthesis, anticonvulsant and toxicity evaluation of 2-(1H-indol-3-yl) acetyl-N-(substituted phenyl) hydrazine carbothioamides and their related heterocyclic derivatives. Acta Pharmaceutica 58(4): 445.
    Tehrani, M.; Zarghi, A. & Jabarian, L. 2005. Design and synthesis of new imidazole derivatives of captopril. Iranian Journal of Pharmaceutical Research 1: 37-41.
    Warnecke, A.; Fichtner, I.; Saß, G. & Kratz, F. 2007. Synthesis, cleavage profile, and antitumor efficacy of an albumin‐binding prodrug of methotrexate that is cleaved by plasmin and cathepsin B. Archiv der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry 340(8): 389-395.