Main Article Content


Urinary tract infections due to urinary pathogenicity Escherichia coli (UPEC) is one of the most important diseases in the world. Escherichia coli encodes a wide range of virulence factors that are closely related to bacterial etiology. The purpose of the current study was to assess the presence of various phenotypic pathogenic markers in UPEC isolates and determine their correlation with antibiotic resistance patterns. Twenty-four uropathogenic E. coli (UPEC) isolates were collected from patients with various clinical manifestations of urinary tract infections and the isolates were identified by Vitek 2 automated system. Antibiotic susceptibility was measured using the disc diffusion method. Following biofilm, capsule, and hemolysin production, the csgA, tos A, and class 1 intgrons genes were detected, and finally the tosA gene sequence was executed. The sensitivity of bacterial isolates to ten different antibiotics was tested, and the bacteria varied in their resistance to these tested antibiotics, as all bacterial isolates were multi-resistant to antibiotics multi-drug resistance (MDR). The results of the formation of biofilms by the tube method showed a variation in terms of biofilm formation. The number of isolates that formed a strong biofilm was 8 (33.3%), which formed an average biofilm of 10 (41.7%), and finally the number of isolates that formed a weak biofilm was 6 (25%). DNA was obtained from all isolates under study and investigate the genes of virulence factors by using polymerase chain reaction. The results showed that 100% of the Escherichia coli isolates contained the gene, tos A, csg A gene and class 1 integrons.


Uropathogenic Biofilm csgA gene tos A gene Class 1 intgrons gene Multi-drug resistance.

Article Details

How to Cite
AL-YASI, A. A. A., & Al SAADI, K. A. (2022). Molecular detection of genes responsible for multidrug resistance in uropathogenic Esherichia coli. Iranian Journal of Ichthyology, 9, 69–78. Retrieved from


    Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F. & Hashem, Z.S. 2020. Prevalence of virulence genes and their association with antimicrobial resistance among pathogenic E. coli isolated from Egyptian patients with different clinical infections. Infection and Drug Resistance13:1221.
    Adamus-Białek, W.; Baraniak, A.; Wawszczak, M.; Głuszek, S.; Gad, B.; Wróbel, K. & Parniewski, P. 2018. The genetic background of antibiotic resistance among clinical uropathogenic Escherichia coli strains. Molecular Biology Reports 45(5): 1055-1065.
    Al Saadi, K.A.; Jaber, S.A. & Atiyah, H.H. 2018. The Enterobacteriaceae Isolated from Urinary Tract Infections in Kerbala City. Scientific Journal of Medical Research 2(7): 147-149.
    Azam, M.W.; Zuberi, A. & Khan, A.U. 2020. bolA gene involved in curli amyloids and fimbriae production in E. coli: exploring pathways to inhibit biofilm and amyloid formation. Journal of Biological Research-Thessaloniki 27(1): 1-12.
    Azurmendi, H.F.; Veeramachineni, V.; Freese, S.; Lichaa, F.; Freedberg, D.I. & Vann, W.F. 2020. Chemical structure and genetic organization of the E. coli O6: K15 capsular polysaccharide. Scientific Reports 10(1): 1-12.‏
    Barnhart, M.M. & Chapman, M.R. 2006. Curli biogenesis and function. Annual Review of Microbiology 60: 131-147.
    Bartoletti, R.; Cai, T.; Wagenlehner, F.M.; Naber, K. & Johansen, T.E.B. 2016. Treatment of urinary tract infections and antibiotic stewardship. European Urology Supplements 15(4): 81-87.
    Blango, M.G. & Mulvey, M.A. 2010. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrobial Agents and Chemotherapy 54(5): 1855-1863.
    Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M. & Beachey, E.H. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of Clinical Microbiology 22(6): 996-1006.
    CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 2018. 28th ed. CLSI supplement M100.Wayne, PA: Clinical and Laboratory Standards Institute.
    Cocchi, S.; Grasselli, E.; Gutacker, M.; Benagli, C.; Convert, M. & Piffaretti, J.C. 2007. Distribution and characterization of integrons in Escherichia coli strains of animal and human origin. FEMS Immunology & Medical Microbiology 50(1): 126-132.‏
    Cordeiro, M.A.; Werle, C.H.; Milanez, G.P. & Yano, T. 2016. Curli fimbria: an Escherichia coli adhesin associated with human cystitis. Brazilian Journal of Microbiology 47: 414-416.
    Eid, H.I.; Algammal, A.M.; Nasef, S.A.; Elfeil, W.K. & Mansour, G.H. 2016. Genetic variation among avian pathogenic E. coli strains isolated from broiler chickens. Asian Journal of Animal and Veterinary Advances 11(6): 350-356.
    Fonseca, É.L.; Vieira, V.V.; Cipriano, R. & Vicente, A.C. 2005. Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in Amazon region, Brazil. FEMS Immunology & Medical Microbiology 44(3): 303-309.
    Ganjo, A.R. 2018. In vitro biofilm formation and antimicrobial resistance pattern in Pseudomonas aeruginosa recovered from infected burn wounds in Erbil city. ZANCO Journal of Pure and Applied Sciences 30(2): 67-75.
    Goyal, P.; Krasteva, P.V.; Van Gerven, N.; Gubellini, F.; Van den Broeck, I.; Troupiotis-Tsaïlaki, A. & Remaut, H. 2014. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516(7530): 250-253.‏
    Gutman, T.; Goren, G.; Efroni, O. & Tuller, T. 2021. Estimating the predictive power of silent mutations on cancer classification and prognosis. NPJ Genomic Medicine 6(1): 1-15.
    Hufnagel, D.A.; Depas, W.H. & Chapman, M.R. 2015. The biology of the Escherichia coli extracellular matrix. Microbiology Spectrum 3: 249-273.
    Kikuchi, T.; Mizunoe, Y.; Takade, A.; Naito, S. & Yoshida, S. 2005. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiology and Immunology 49: 875-884.
    Long, H.; Miller, S.F.;, Strauss, C.; Zhao, C.; Cheng, L.; Ye, Z. & Lynch, M. 2016. Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proceedings of the National Academy of Sciences 113(18): E2498-E2505.‏
    Lupino, K.M.; Romano, K.A.; Simons, M.J.; Gregg, J.T.; Panepinto, L.; Cruz, G.M. & Hecht, G.B. 2018. A recurrent silent mutation implicates fecA in ethanol tolerance by Escherichia coli. BMC Microbiology 18(1): 1-17.
    May, A.K.; Gleason, T.G.; Sawyer, R.G. & Pruett, T.L. 2000. Contribution of Escherichia coli alpha-hemolysin to bacterial virulence and to intraperitoneal alterations in peritonitis. Infection and Immunity 68(1): 176-183.
    Moori Bakhtiari, N. & Javadmakoei, S. 2017. Survey on biofilm production and presence of attachment factors in human uropathogenic strains of Escherichia coli. Jundishapur Journal of Microbiology 10(6).‏
    Nhu, N.T.K.; Phan, M.D.; Forde, B.M.; Murthy, A.M.; Peters, K.M.; Day, C.J. & Schembri, M.A. 2019. Complex multilevel control of hemolysin production by uropathogenic Escherichia coli. MBio 10(5): e02248-19.‏
    Pai, H.; Byeon, J.H.; Yu, S.; Lee, B.K. & Kim, S. 2003. Salmonella enterica serovar Typhi strains isolated in Korea containing a multidrug resistance class 1 integron. Antimicrobial Agents and Chemotherapy 47(6): 2006-2008.‏
    Rosser, S.J. & Young, H.K. 1999. Identification and characterization of class 1 integrons in bacteria from an aquatic environment. Journal of Antimicrobial Chemotherapy 44(1):11-18.
    Sabir, S.; Anjum, A.A.; Ijaz, T. & Ali, M.A. 2014. Isolation and antibiotic susceptibility of E. coli from urinary tract infections in a tertiary care hospital. Pakistan Journal of Medical Sciences 30(2):389.
    Singh, T.; Das, S.; Ramachandran, V.G.; Wani, S.; Shah, D.; Maroof, K.A. & Sharma, A. 2017. Distribution of integrons and phylogenetic groups among enteropathogenic Escherichia coli isolates from children< 5 years of age in Delhi, India. Frontiers in Microbiology 8: 561.
    Sørensen, U.B. 1995. Pneumococcal polysaccharide antigens: capsules and C- polysaccharide. An immunochemical study. Danish Medical Bulletin 42(1): 47-53.
    Subashchandrabose, S. & Mobley, H.L. 2017. Virulence and fitness determinants of uropathogenic Escherichia coli. Urinary Tract Infections: Molecular Pathogenesis and Clinical Management 235-261.
    Tabasi, M.; Karam, M.R.A.; Habibi, M.; Yekaninejad, M.S. & Bouzari, S. 2015. Phenotypic assays to determine virulence factors of uropathogenic Escherichia coli (UPEC) isolates and their correlation with antibiotic resistance pattern. Osong Public Health and Research Perspectives, 6(4), 261-268.
    Terlizzi, M.E.; Gribaudo, G. & Maffei, M.E. 2017. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Frontiers in Microbiology 8: 1566.
    Ukah, U.V.; Glass, M.; Avery, B.; Daignault, D.; Mulvey, M.R.; Reid-Smith, R.J. & Manges, A.R. 2018. Risk factors for acquisition of multidrug-resistant Escherichia coli and development of community-acquired urinary tract infections. Epidemiology & Infection 146(1): 46-57.
    Vigil, P.D.; Wiles, T.J.; Engstrom, M.D.; Prasov, L.; Mulvey, M.A. & Mobley, H.L. 2012. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infection and Immunity 80(2): 493-505.
    Wu, G.; Carter, B.; Mafura, M.; Liebana, E.; Woodward, M.J. & Anjum, M.F. 2008. Genetic diversity among Escherichia coli O157: H7 isolates and identification of genes linked to human infections. Infection and Immunity 76(2): 845-856.
    Xicohtencatl-Cortes, J., Cruz-Cordova, A., Cazares-Dominguez, V., Escalona-Venegas, G., Zavala-Vega, S.; Arellano-Galindo, J. & Luna-Pineda, V.M. 2019. Uropathogenic Escherichia coli strains harboring tosA gene were associated to high virulence genes and a multidrug-resistant profile. Microbial Pathogenesis 134: 103593.