Main Article Content

Abstract

Production of cellulase is of great importance for industrially processes and developing the metabolic microbes used widely in different fields. Aspergillus, as one of fungal genera, serve to produce many enzymes such as cellulase. Twenty-three isolates of fungi belong to four species of Aspergillus were obtained from central lab veterinary medicine in Basra, Iraq and screened for maximum cellulolytic activity. Screening of fungal species was done on Petri plate containing carboxymethyl cellulase growth media. Among 23 isolates of fungi, 20 fungal isolates revealed cellulolytic activity and three depicted zero cellulase activity. All isolates of A. niger showed strong secretion of cellulolytic activity on agars followed by A. fumigatus, with two isolates of A. flavus and one isolateof A. terreus revealed zero cellulytic activity. The results of relative gene expression of Aspergillus species to five cellulase genes cbhb, exogluconase, endogluconase A, endogluconase B, endogluconase C and control B actin gene revealed over expression of A. niger compared to other species.

Keywords

Fungi Aspergillus Cellulolytic enzyme Molecular assay.

Article Details

How to Cite
S.JASIM, A., A.ABASS, B., & M.AL-RUBAYAE, I. (2022). Genes expression of cellulase enzyme in four Aspergillus species. Iranian Journal of Ichthyology, 9, 1–10. Retrieved from https://ijichthyol.org/index.php/iji/article/view/10022-1

References

    Ahmed, A.; Nasim, Fu-H.; Batool, K. & Bibi, A. 2017. Microbial β-Glucosidase: Sources, Production and Applications. Journal of Applied and Environmental Microbiology 5: 31-46,
    Al-Sheikh, H.; Watson, A.J.; Lacey, G.A. & Punt, P.J. 2004. Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Molecular Microbiology 53: 1731-1742.
    Bak, J.S. 2015. Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood rotting basidiomycete Phanerochaete chrysosporium. Microbiology Open 4: 151-166.
    Bansal, N.; Tewari, R.; Soni, R. & Soni, S.K. 2012. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Management 32(7): 1341-1346.
    Behera, B.C.; Sethi, B.K.; Mishra, R.R.; Dutta, S K. & Thatoi, H.N. 2017. Microbial cellulases–Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology 15(1): 197-210.
    Bradner J.R.; Gillings M. & Nevalainen K.M.H. 1999. Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World Journal of Microbiology and Biotechnology 15: 131-132.
    Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V. & Henrissat, B. 2009. The Carbohydrate Active Enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 37: D233-D238.
    Coradetti, S.T.; Craig, J.P.; Xiong, Y.; Shock, T.; Tian, C. & Glass, N.L. 2012. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proceedings of the National Academy of Sciences 109: 7397-7402.
    Dashtban, M.; Maki, M.; Leung, K.T.; Mao, C. & Qin, W. 2010. Cellulase activities in biomass conversion: measurement methods and comparison. Critical Reviews in Biotechnology 30: 302-309.
    Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S. 2011. Optimization for the Production of Cellulase Enzyme from Municipal Solid Waste Residue by Two Novel Cellulolytic Fungi. Biotechnology Research International 2011. Pp: 8.
    Gilbert, H.J. 2010. The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiology 153: 444-455.
    Glass, N.L.; Schmoll, M.; Cate, J.H. & Coradetti, S. 2013. Plant cell wall deconstruction by ascomycete fungi. Annual Review of Microbiology 67: 477-498.
    Hernandez, C.; Milagres, A.M.F.; Vazquez-Marrufo, G.; Munoz-Paez, K.M.; Garcia-Perez, J.A. & Alarcon, E. 2018. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Folia Microbiology (Praha).
    Imran, M.; Anwar, Z.; Irshad, M.; Asad, M.J. & Ashfaq, H. 2016. Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: A review. Advances in Enzyme Research 4: 44.
    Kubicek, C.P. 2013. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. Journal of Biotechnology 163: 133-142.
    Kubicek, C.P.; Mikus, M.; Schuster, A.; Schmoll, M. & Seiboth, B. 2009. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels 2: 19.
    Kuhad, R.C.; Gupta, R. & Singh, A. 2011. Microbial cellulases and their industrial applications. Enzyme Research 2011.
    Mahmod, M.A.; Al-Othman, M.R.; Abd-EL-Aziz, A.R.M.; Metwaly, H.A. & Mohamed, H.A. 2016. Expression of genes encoding cellulytic enzymes in some Aspergillus species. Genetic and Mplecular Research 15(4): 15048913.
    Mahmood, N.; Ahsan, M.; Muhammad, I.; Afzal, S.; Qureshi, Z.; Naqvi, S.A.R. & Shahzad, S.A. 2014. Molecular expression profile of different cellulolytic enzyme genes in Aspergillus niger in response to UV radiation and chemical mutagenesis. Cellulose Chemistry and Technology 48: 529-533.
    Mäkelä, M.R.; Donofrio, N. & de Vries, R.P. 2014. Plant biomass degradation by fungi. Fungal Genetics and Biology 72: 2-9.
    Mandels M.L.; Hontz L. & Nistrom J. 1974. Enzymatic hydrolysis of waste cellulose. Biotechnology Bioengineering 16: 471-493.
    Marui, J.; Kitamoto, N.; Kato, M.; Kobayashi, T. & Tsukagoshi, N. 2002. Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes in Aspergillus oryzae. FEBS Letters 528(1-3): 279-282.
    Nazir, A.; Soni, R.; Saini, H.S.; Kaur, A. & Chadha, B.S. 2010. Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Applied biochemistry and biotechnology 162(2): 538-547.
    Nidhi, C.; Sharma, B. & Singh, P.K. 2017. Energy Value in Biomass and Plastic Components of Municipal Solid Waste Matter, International Journal of Science and Technology 3: 82- 90.
    Ogawa, M.; Kobayashi, T. & Koyama, Y. 2013. ManR, a transcriptional regulator of the b-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae. Bioscience, Biotechnology, and Biochemistry 77: 426-429.
    Pečiulytė, D. 2007. Isolation of cellulolytic fungi from waste paper gradual recycling materials. Ekologija 53: 11-18.
    Renge, V.; Khedkar, S.V. & Nandurkar, N.R. 2012. Enzyme synthesis by fermentation method: a review. Scientific Reviews and Chemical Communications 2: 585-590.
    Romani, A.M.; Fischer, H.; Mille-Lindblom, C. & Tranvik, L.J. 2006. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87: 2559-2569.
    Saitou, N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
    Saxena, R, Adhikari, D. & Goyal, H. 2009. Biomass-based energy fuel through biochemical routes: a review. Renewable and Sustainable Energy Reviews 13: 167-178.
    Schmittgen, T.D. & Livak, K.J. 2008. Analyzing real time pcr data by the comparative CTmethod (2008). Nature Protocols 3(6): 1101-1108.
    Stricker, A.R.; Mach, R.L. & De Graaff, L.H. 2008. Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology 78(2): 211-220.
    Sun, Y. & Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83: 1-11.
    Teather, R.M. & Wood, P.J. 1982. Use of congo red-polysacharide interactions in enumeration and characterization of cellulolytic bacteria in the bovine rumen. Applied and Environmental Microbiology 43: 777-780.
    Timo, S.; Raphael, G.; Nora, B.; Scott, E.B. &Steven, W.S. 2017. Thermoascus aurantiacus is an Intriguing Host for the Industrial Production of Cellulases. Current Biotechnology 6: 89- 97.
    Todaka, N.; Inoue, T.; Saita, K.; Ohkuma, M.; Nalepa, C.A.; Lenz, M. & Moriya, S. 2010. Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PloS one 5(1): e8636.
    Wang, F.; Li, F.; Chen, G. & Liu, W. 2009. Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiological Research 164(6): 650-657.
    Ward, O.P.; Qin, W.M.; Dhanjoon, J.; Ye, J. & Singh, A. 2005. Physiology and biotechnology of Aspergillus. Advances in Applied Microbiology 58: 1-75.