Main Article Content


Blend film from methylcellulose (MC)-poly vinyl alcohol (PVA) and hydroxypropyl methyl cellulose (HPMC)-poly(vinyl alcohol) (PVA) was prepared by casting technique. Mechanical and FTIR tests have been employed with nine weight ratios, including 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70, 30, 80/20, 90/10) for each prepared polymer to investigate the best resulted sample. The results indicated that with increasing concentration of PVA, there is an increase in tensile strength in two prepared polymers. Whereas an increase in glycerol concentration in HPMC–PVA film causes an increase in elongation at break making films more flexible. The two samples that have high tensile strength were subjected to tensile tests after various periods of UV exposure. It was found that the tensile strength increased with increasing exposure time. The highest values obtained with 12 houre.


MC-PVA HPMC-PVA UV Irradiation FTIR Tensile strength.

Article Details

How to Cite
ABDUL MUHSIN, Z. A., ALDHAMIN, A. S., & SHAFIK, S. S. (2021). Enhancement mechanical properties of cellulose ethers - polyvinyl alcohol blend by UV irradiation. Iranian Journal of Ichthyology, 8, 168–176. Retrieved from


    Abdel-Zaher, N.A.; Moselhey, M.T. & Guirguis, O.W. 2016. Effect of fast neutrons on the structure and thermal properties of PVA/HPMC blends. Journal of Thermal Analysis and Calorimetry 126(3): 1289-1299.
    Abdel-Zaher, N.A.; Moselhey, M.T. & O Guirguis, W. 2017. Ultraviolet-ozone irradiation of HPMC thin films: Structural and thermal properties. Advances in Materials Research 6(1): 001.
    Al-Bermany, A.-K.J. & Nawfal, S.H. 2013. Enhancement Mechanical Properties of Polyvinly Alcohol by adding Methyl Cellulose using ultrasonic technique. Advances in Physics Theories and Applications 15.
    Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M. S.; Ulański, P. & Al-Sheikhly, M. 2020. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 12(12): 2877.
    Ateş, S.; Durmaz, E. & Hamad, A. 2016. Evaluation Possibilities of Cellulose Derivatives in Food Products. Kastamonu Üniversitesi Orman Fakültesi Dergisi 16(2).
    Bochek, A.; Shevchuk, I. & Kalyuzhnaya, L. 2006. Properties of aqueous solutions of methyl cellulose-polyvinyl alcohol blends. Russian Journal of Applied Chemistry 79(12): 2007-2012.
    Criado, P.; Fraschini, C.; Salmieri, S.; Bécher, D.; Safrany, A. & Lacroix, M2016. Free radical grafting of gallic acid (GA) on cellulose nanocrystals (CNCS) and evaluation of antioxidant reinforced gellan gum films. Radiation Physics and Chemistry 118: 61-69.
    Guirguis, O.W. & Moselhey, M.T. 2011. Optical study of poly (vinyl alcohol)/hydroxypropyl methylcellulose blends. Journal of Materials Science 46(17): 5775-5789.
    Hofenk-de Graaff, J. 1981. Central research laboratory for objects of art and science. Gabriel Metsustroat and. 1071.
    Kalia, S., Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J. & Nassiopoulos, E. 2011. Cellulose-based bio-and nanocomposites: a review. International Journal of Polymer Science2011.
    Khairunnisa, S.; Junianto, J.; Zahidah, Z. & Rostini, I.2018. The effect of glycerol concentration as a plasticizer on edible films made from alginate towards its physical characteristic. World Scientific News 112: 130-141.
    Machiste, E.O.; Segale, L.; Conti, S.; Fasani, E.; Albini, A.; Conte, U. & Maggi, L. 2005. Effect of UV light exposure on hydrophilic polymers used as drug release modulators in solid dosage forms. Journal of Drug Delivery Science and Technology 15(2): 151-157.
    Mahzan, S.; Fitri, M. & Zaleha, M. 2017. UV radiation effect towards mechanical properties of Natural Fibre Reinforced Composite material: A Review. in IOP Conference Series: Materials Science and Engineering. IOP Publishing.
    Mallapragada, S.K. & Peppas, N.A. 1996. Dissolution mechanism of semicrystalline poly (vinyl alcohol) in
    Miller, K.S. & Krochta, J. 1997. Oxygen and aroma barrier properties of edible films: A review. Trends in Food Science & Technology 8(7): 228-237.
    Ngadiman, N.H.A.; Yusof, N.M.; Idris, A.; Fallahiarezoudar, E. & Kurniawan, D. 2018.. Novel processing technique to produce three dimensional polyvinyl alcohol/maghemite nanofiber scaffold suitable for hard tissues. Polymers 10(4): 353.
    Paunonen, S. 2013. Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8(2): 3098-3121.
    Qiu, K. & Netravali, A.N. 2012. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites Science and Technology 72(13): 1588-1594.
    Rajendran, S. & shanker Babu, R. 2009. Ionic conduction behavior in PVC–PEG blend polymer electrolytes upon the addition of TiO 2. Lonics 15(1): 61-66.
    Rao, B.L.; Shivananda, C.S.; Shetty, G.R.; Harish, K. V.; Madhukumar, R. & Sangappa, Y.2018. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films. in AIP Conference Proceedings. AIP Publishing LLC.
    Sabbagh, F.; Muhamad, I.I.; PaLe, N. & Hashim, Z. 2018. Strategies in Improving Properties of Cellulose-Based Hydrogels for Smart Applications.
    Schäfer, D.; Reinelt, M.; Stäbler, A. & Schmid, M.2018. Mechanical and barrier properties of potato protein isolate-based films. Coatings 8(2): 58.
    Senna, M.M.; Helal, R.H.; Mostafa, T.A. & El-Naggar, A.W. M.2018. Thermal Decomposition Properties of Gamma-Irradiated Polyvinyl Alcohol (PVA)/Methyl Cellulose (MC) Blends. in The International Conference on Chemical and Environmental Engineering. Military Technical College.
    Shahbazi, M.; Ahmadi, S.J.; Seif, A. & Rajabzadeh, G. 2016. Carboxymethyl cellulose film modification through surface photo-crosslinking and chemical crosslinking for food packaging applications. Food Hydrocolloids 61: 378-389.
    Sionkowska, A.; Wisniewski, M.; Skopinska, J.; Vicini, S. & Marsano, E. 2005. The influence of UV irradiation on the mechanical properties of chitosan/poly (vinyl pyrrolidone) blends. Polymer degradation and stability, 88(2): 261-267.
    Sonker, A.K.; Rathore, K.; Teotia, A.K.; Kumar, A.; & Verma, V. 2019. Rapid synthesis of high strength cellulose–poly (vinyl alcohol)(PVA) biocompatible composite films via microwave crosslinking. Journal of Applied Polymer Science 136(17): 47393.
    Sothornvit, R. & Rodsamran, P. 2018. Effect of a mango film on quality of whole and minimally processed mangoes. Postharvest Biology and Technology 47(3): 407-415.
    Sullad, A.G.; Manjeshwar, L.S.; Aminabhavi, T.M. & Naik, P.N. 2014. Microspheres of poly (vinyl alcohol) and methyl cellulose for the controlled release of losartan potassium and clopidogrel bisulphate. American Journal of Advanced Drug Delivery 3: 407-423.
    Varganici, C.D.; Rosu, L.; Mocanu, O.M. & Rosu, D. 2015. Influence of poly (vinyl alcohol) on cellulose photochemical stability in cryogels during UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry 297: 20-30.
    Vlaia, L.; Coneac, G.; Olariu, I.; Vlaia, V. & Lupuleasa, D. 2016. Cellulose-derivatives-based hydrogels as vehicles for dermal and transdermal drug delivery. Emerging Concepts in Analysis and Applications of Hydrogels 2: 64.
    Yousif, E. & Haddad, R. 2013. Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2(1): 1-32.
    Zhang, H.; Xie, Y.; Tang, Y.; Ni, S.; Wang, B.; Chen, Z. & Liu, X. 2015. Development and characterization of thermo-sensitive films containing asiaticoside based on polyvinyl alcohol and Methylcellulose. Journal of Drug Delivery Science and Technology 30: 133-145.
    Zhou, J.; Ma, Y.; Ren, L.; Tong, J.; Liu, Z. & Xie, L. 2009. Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydrate Polymers 76(4): 632-638.