Main Article Content

Abstract

This study was conducted for 105 days, including 15 days preliminary period aimed to investigate the effect of adding different levels of probiotics and concentrate diets on blood characteristics and serum biochemical parameters of local Iraqi goat kids. The study included 18 males of local goats at the age of 3 months with an average weight of 16.17±1.10kg. The kids were randomly distributed into 6 treatments with two levels of 40, and 60% and three levels of probiotics of 0, 2.5, and 5g/head/day. The probiotics were Lactobacillus acidophilus (108), Bacillus subtilis (109), Bifidobacterium (108, and Saccharomyces cerevisiae (109). The addition of the probiotic led to a significant increase in the level of glucose in the blood serum from 82.21mg/100 ml for the group of kids fed a 40% concentrated diet to more than 90.0mg/100 ml for the kids fed a 60% concentrated diet and to which a probiotic is added 2.5 or 5g/head/day. A significant decrease in cholesterol concentration was found in groups fed a concentrated diet of 60%. Triglycerides elevated from 23.86mg/100ml of kids fed 40% concentrate and 2.5mg probiotics/head/day to 29.17mg/100ml of kids fed 60% concentrate and 2.5g probiotics/head/day. In conclusion, the addition of the probiotic at the two levels 2.5 or 5g/ head/ day improved the biochemical and blood parameters of the animal.

Keywords

Probiotics Antibiotics Feeding Lactobacillus acidophilus

Article Details

How to Cite
AL-GALIBY, M. K. A. ., AL-HASSNAWI, I. A., & AL-HASSNAWI, M. M. (2023). Impact of different levels of probiotics on blood and biochemical parameters of local goat kids . Iranian Journal of Ichthyology, 10(Special Issue 1), 202–208. Retrieved from http://ijichthyol.org/index.php/iji/article/view/952

References

  1. Al Nassar, M.R.K. 2017. Effect of dosing different levels of kefir milk as a bioenergetic enhancer on the performance of male lambs in Orabi sheep. Thesis, College of Agriculture, University of Basrah, 114 p.
  2. Alayande, K.A.; Aiyegoro, O.A. & Ateba, C.N. 2020. Probiotics in animal husbandry: applicability and associated risk factors. Sustainability 12(3): 1087.
  3. Al-Galbi, H.A.J.; Al-Galbi, M.K.; A.Shwaa, I.A. & Jnam, A.A. 2017. Effect of using Saccharomyces cerevisiae with baggaz on blood and biochemical parameters of Arabi lambs blood serum. Journal of College of Education for Pure Sciences (JCEPS) 7(1): 174-183.
  4. Al-Galibi, H.A.J. 2010. Effect of different percentages of the biocomponent and the corn cohort in the digestion and performance of Arabian lambs. PhD thesis-Faculty of Agriculture, University of Basra, 175 p.
  5. Al-Ghazi, N.K.J. 2022. Effect of adding celery seeds as a probiotic to local goat diets in some productive characteristics. Thesis University of Thi-Qar. 164 p.
  6. Al-Khafaji Al-Wazeer, A.A.M.; Al-Khuzai, H.M.H.; Al-Marsumi, T. & Al-Marsumi, S.F. 2011. Effect of adding different levels with baker's yeasts and black seeds on some blood and biochemical traits in Arrabi Sheep Lambs. Al-Qadisiyah Journal of Veterinary Medicine Sciences 10(2): 111-116.
  7. Amin, A.B. & Mao, S. 2021. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Animal Nutrition 7(1): 31-41.
  8. Angulo, M.; Reyes-Becerril, M.; Cepeda-Palacios, R.; Tovar-Ramírez, D.; Esteban, M.Á. & Angulo, C. 2019. Probiotic effects of marine Debaryomyces hansenii CBS 8339 on innate immune and antioxidant parameters in newborn goats. Applied Microbiology and Biotechnology 103(5): 2339-2352.
  9. Antunović, Z.; Šperanda, M.; Amidžić D, Šerić V, Stainer Z, Domačinović & M, Boli F. 2006. Probiotic application in lamb’s nutrition. Krmiva 48: 175-180.
  10. Ayala-Monter, M.A.; Hernández-Sánchez, D.; González-Muñoz, S.; Pinto-Ruiz, R.; Martínez-Aispuro, J.A.; Torres-Salado, N. & Gloria-Trujillo, A. 2019. Growth performance and health of nursing lambs supplemented with inulin and Lactobacillus casei. Asian-Australasian Journal of Animal Sciences 32(8): 1137.
  11. Bedford, A.; Beckett, L.; Harthan, L.; Wang, C.; Jiang, N.; Schramm, H.; Guan, L.; Daniels, K.M.; Hanigan, M.D. & White, R.R. 2020. Ruminal volatile fatty acid absorption is affected by elevated ambient temperature. Scientific Reports 10(1): 13092.
  12. Cai, L.; Hartanto, R.; Zhang, J. & Qi, D. 2021a. Clostridium butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo. Animals 11(11): 3261-3270.
  13. Cai, L.; Yu, J.; Hartanto, R. & Qi, D. 2021b. Dietary supplementation with Saccharomyces cerevisiae, Clostridium butyricum and their combination ameliorate rumen fermentation and growth performance of heat-stressed goats. Animals 11(7): 2116-2124.
  14. Cai, L.Y.; Yu, J.K.; Hartanto, R.; Zhang, J.; Yang, A.; Qi, D.S. 2019. Effects of heat challenge on growth performance, ruminal, blood and physiological parameters of Chinese crossbred goats. Small Ruminant Research 174: 125-130.
  15. Corzo, G. & Gilliland, S. 1999. Measurement of bile salt hydrolase ac-tivity from Lactobacillus acidophilus based on disappearance of con-jugated bile salts. Journal of Dairy Science 82(3): 466-471.
  16. Dias, A.L.G.; Freitas, J.A.; Micai, B.; Azevedo, R.A.; Greco, L.F.; & Santos, J.E.P. 2018. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. Journal of Dairy Science 101(1): 201-221.
  17. Faber, F.; Tran, L.; Byndloss, M.X.; Lopez, C.A.; Velazquez, E.M.; Kerrinnes, T.; Nuccio, S.P.; Wangdi, T.; Fiehn, O.; Tsolis, R.M. & Baumler, A.J. 2016. Host-mediated sugar oxidation promotes post-antibiotic pathogen expansion. Nature 534(7609): 697-699.
  18. Forough, S.; Kumarss, A.; Azam, H. & Mohaddeseh, L. 2022. Application of Saccharomyces cerevisiae isolated from industrial effluent for zinc biosorption and zinc-enriched SCP production for human and animal. Food Science and Technology 42: e82021.
  19. Gemeda, B. A., Amenu, K., Magnusson, U., Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Desta, H. & Wieland, B. 2020. Antimicrobial use in extensive smallholder livestock farming systems in ethiopia: knowledge, attitudes, and practices of livestock keepers. Frontiers in Veterinary Science 7: 55.
  20. Gutierrez, R.M.P.; Juarez, V.A.; Sauceda, J.V. & Sosa, I.A. 2014. In vitro and in vivo antidiabetic & antiglycation properties of apium 111 graveolens in type 1 & 2 diabetic rats. International Journal of Pharmacology 10(7): 368-379.
  21. Hassan, S.A. and Mohammed, S.F. 2016. Effect of Saccharomyces cerevisiae supplementation on rumen characteristics in Awassi lambs fed diets with different roughage to concentrate ratios. The Iraqi Journal of Agricultural Sciences 47(Special Issue): 1-11.
  22. Hussein, A.F. 2018. Effect of probiotics on growth, some plasma bio-chemical parameters & immunoglobulins of growing Najdi lambs. World's Veterinary Journal 8(4): 80-89.
  23. Ibrahim, S.S. & Hassan, S.A. 2015. Effect of using feed blocks containing different nitrogen sources and with or without peaker yeast on blood characteristics of Awassi rams. Al-Anbar Journal of Veterinary Sciences 8(1): 37-49.
  24. Jouany, J.P. & Morgavi, D.P. 2007. Use of ‘natural’ products as alternatives to antibiotic feed additives in ruminant production. Animal 1(10): 1443-1466.
  25. Liu, S.; Shah, A.M.; Yuan, M.; Kang, K.; Wang, Z.; Wang, L.; Xue, B.; Zou, H.; Zhang, X.; Yu, P.; Wang, H.; Tian, G. & Peng, Q. 2022. Effects of dry yeast supplementation on growth performance, rumen fermentation characteristics, slaughter performance and microbial communities in beef cattle. Animal Biotechnology 33(6): 1150-1160.
  26. Long, L.; Meng, X.; Sun, J.; Jing, L.; Chen, D. & Yu, R. 2022. Ameliorated effect of Lactobacillus plantarum SCS2 on the oxidative stress in HepG2 cells induced by AFB1. Food Science and Technology 42: e16522.
  27. Ma, J.; Wang, C.; Wang, Z.; Cao, G.; Hu, R.; Wang, X.; Zou, H.; Kang, K.; Peng, Q.; Xue, B.; Wang, L.; Zhu, Y.; & Zhu, X. 2021. Active dry yeast supplementation improves the growth performance, rumen fermentation, and immune response of weaned beef calves. Animal Nutrition 7(4): 1352-1359.
  28. Milewski, S. & Sobiech, P. 2009. Effect of dietary supplementation with Saccharomyces cerevisiae dried yeast on milk yield, blood biochemical and haematological indices in ewes. Bulletin of the Veterinary Institute in Pulawy 53: 753-758.
  29. Mohammed, S.F. 2016. Effect of addition of commercial bakers yeast saccharomyces cerevisiae and Iraqi probiotic on digestion, weight gain and some blood parameters in Awassi sheep. Kufa Journal for Agricultural Science 8(3): 329-309.
  30. Mousa, K.M.; El-Malky, O.M.; Komonna, O.F. & Rashwan, S.E. 2012. Effect of live dried yeast supplementation on digestion coefficients, some rumen fermentation, blood constituents and some reproductive and productive parameters in Rahmani sheep. Journal of American Science 8: 291-303.
  31. Noh, D.O.; Kim, S.H. & Gilliland, S.E. 1997. Incorporation of choles-terol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. Journal of dairy science, 80(12), 3107-3113.
  32. Saleem, A.M.; Zanouny, A.I. & Singer, A.M. 2017. Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre- and post-weaning period. Asian-Australasian Journal of Animal Sciences 30(4): 523-530.
  33. Salminen, S.; Ouwehand, A.; Benno, Y. & Lee, Y.K. 1999. Probiotics: how should they be defined? Trends in Food Science & Technology 10(3): 107-110.
  34. SPSS. 2012. Statistical Packeges for Social Sciences. Version 20. Manual. USA.
  35. Taboada, N.; Fernández Salom, M.; Córdoba, A.; González, S.N.; López Alzogaray, S. & van Nieuwenhove, C. 2022. Administration of selected probiotic mixture improves body weight gain and meat fatty acid composition of Creole goats. Food Bioscience 49: 101836. 6.
  36. Yuan, K.; Ma, J.; Liang, X.; Tian, G.; Liu, Y.; Zhou, G.; Chen, Y. & Yang, Y. 2023. Effects of microbial preparation on production performance and rumen microbial communities of goat. Food Science and Technology 43:1-8.
  37. Zamojska, D.; Nowak, A.; Nowak, I. & Macierzyńska-Piotrowska, E. 2021. Probiotics and postbiotics as substitutes of antibiotics in farm animals: a review. Animals 11(12): 3431.
  38. Zhang, M.; Wang, J. & Yang, Z. 2022. Immunomodulatory and antitumor activities of the exopolysaccharide produced by potential probiotic Lactobacillus plantarum YW11 in a HT-29 tumor-burdened nude mouse model. Food Science and Technology 42: e57822.