Main Article Content

Abstract

Copepods are vital key components of marine and freshwater ecosystems and play an important role in the transfer of energy from primary producers to secondary producers and consumers. The optimization of feeding copepods with the desired diet is essential to culture them in large quantities. Hence, this study aimed to investigate the high-density production of a marine copepod, Dioithona rigida using different microalgal diets and evaluate the growth and survival of marine finfish larvae (Asian seabass), Lates calcarifer. The high-density culture was observed in D. rigida fed a mixed diet (50:50) of C. vulgaris and N. oculata, which reached a population density of 22500±2523 ind./L on the 21st day culture period. Essential fatty acids like Linolenic acid and Docosahexaenoic acid show significantly higher percentages in copepods fed a mixed algal diet than those fed with mono algal diet. About the larval rearing experiment of L. calcarifer, the larvae fed D. rigida enriched with a 50:50 mixed diet of C. vulgaris and N. oculata showed faster growth (Length 17.2±0.34mm; Weight 25.4±0.38mg) and highest survival (90%) compared to the other experimental group. This indicates mixed algal diet is more suitable for culturing the aquaculture live feeds for copepods.


 

Keywords

Cyclopoid Mixed algal diet Fatty acid composition Aquaculture management

Article Details

Author Biographies

Md Anwar NAWAZ, School of Aquaculture, Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, India.

 

 

 

Radha VIJAYARAJ, Department of Marine Biotechnology, AMET University, Chennai, India.

 

 

 

Gurunathan BASKAR, Department of Biotechnology, St Joseph's College of Engineering, Chennai, India.

 

 

 

Kandhasamy SIVAKUMAR, School of Aquaculture, Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, India.

 

 

 

How to Cite
NAWAZ, M. A., VIJAYARAJ, R., BASKAR, G., MEENAKSHI, S. V., & SIVAKUMAR, K. (2023). Enrichment of Dioithonarigida (Giesberch, 1896) with different microalgal diets and its effect on survival and growth of Latescalcarifer (Bloch, 1790) larvae. Iranian Journal of Ichthyology, 10(1), 41–48. https://doi.org/10.22034/iji.v10i1.949

References

  1. Coronado-reyes, J.A.; Salazar-torres, J.A.; Juárez-campos, B. & González-hernández, J.C. 2022. Chlorella vulgaris, a microalgae important to be used in Biotechnology: a review. Food Science and Technology 42.
  2. Das, A.P. & Biswas, S.P. 2016. Carotenoids and pigmentation in ornamental fish. Journal of Aquaculture Marine Biology 4: 00093.
  3. DianursantiSistiafi, A.G. &Putri, D.N. 2018. Biodiesel synthesis from Nannochloropsisoculata and Chlorella vulgaris through transesterification process using NaOH/zeolite heterogeneous catalyst. IOP Conference Series: Earth and Environmental Science 105: 012053
  4. Drillet, G.; Stephane, F.; Mie, H.S.; Per, M.J.; Jonas, K.H.; Almagri, K.J. & Benni, W.H. 2011. Status and recommendations on marine copepod cultivation for use as live feed. Aquaculture 31(5): 155-166.
  5. Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.
  6. Folch, J.; Lees, M. & Sloane-Stanley, G.M. 1957. A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226: 497-509.
  7. Kumar, D.S.; Santhanam, P. & Ananth, S. 2017. Evaluation of suitability of wastewater-grown microalgae (Picochlorum maculatum) and copepod (Oithona rigida) as live feed for white leg shrimp Litopenaeus vannamei post-larvae. Aquaculture International 25: 393-411.
  8. Kumar, V.; Venkatachalam, U.; Subramaniam, M.; Subramanian, M. & Venkatachalam, R. 2014. The effects of mixed algal diets on population growth, egg productivity and nutritional profiles in cyclopoid copepods (Thermocyclopshyalinus and Mesocyclopsaspericornis). The Journal of Basic & Applied Zoology 67(2): 58-65.
  9. Love, J.; Ravi, S.; Maarten, M.; Tahira, J. & Damian, D. 2019. JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software 88 (1).
  10. Lowry, O.H.; Rosenbrough, N.J.; Farr, A.L. & Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193: 265-275.
  11. Luis, E.; Conceicao, C.; Yuera, M.; Makridis, P.; Morais, S. & Dinis, T.M. 2010. Live feeds for early stages of fish rearing. Aquaculture Research 41: 613-640.
  12. Mejri, S.C.; Tremblay, R.; Audet, C.; Wills, P.S. & Riche, M. 2021. Essential fatty acid requirements in tropical and cold-water marine fish larvae and juveniles. Frontier in Marine Science 8: 680003.
  13. Nawaz, M.A.; Sivakumar, K.; Baskar, G. & Vijayaraj, R. 2023. Diversity rhythm in pontellid copepods (Pontellidae: Copepoda) from the Covelong coast pre- and post-COVID-19 lockdown, Bay of Bengal. Turkish Journal of Zoology 47(2): 71-80.
  14. Nguyen, T.M.; Nguyen, T.H.; Do, T.N.A.; Nguyen, H.P. & Tran T.N.T. 2022. Influence of dietary fat sources on growth, bacterial resistance, and antioxidant ability of liver in common carp, Cyprinus carpio. International Journal of Aquatic Biology 10(6): 460-473.
  15. Palanichamy, M.; Sivakumar, K. &Altaff, K. 2022. Effects of Thermocyclopsdecipiens and artemianauplii for larval rearing of Macrobrachiumrosenbergii (De Man, 1879). ÇanakkaleOnsekiz Mart University Journal of Marine Sciences and Fisheries 5(1): 1-10.
  16. Radhika, S.; Nandan, B. &Harikrishnan, M. 2016. Morphological and molecular identification of marine copepod DioithonarigidaGiesbrecht, 1896 (Crustacea: Cyclopoida) based on mitochondrial COI gene sequences, from Lakshadweep sea, India. Mitochondrial DNA Part A. 28(6): 872-879.
  17. Razouls, C.; Desreumaux, N.; Kouwenberg, J. & de Bovée, F. 2023. Biodiversity of marine planktonic copepods (morphology, geographical distribution and biological data). Sorbonne University, CNRS.
  18. Santhanam, P. &Perumal, P. 2012. Evaluation of the marine copepod OithonarigidaGiesbrecht as live feed for larviculture of Asian seabass Latescalcarifer Bloch with special reference to nutritional value. Indian journal of fisheries 59(2): 127-139.
  19. Santhanam, P. &Perumal, P. 2013. Developmental biology of brackishwater copepod OithonarigidaGiesbrecht: A laboratory investigation. Indian journal of Geo-marine sciences 42(2): 236-243.
  20. Santhanam, P.; Ananth, S.; Dinesh Kumar, S.; Sasirekha, R. &Premkumar, C. 2019. An intensive culture techniques of marine copepod Oithonarigida (Dioithonarigida) Giesbrecht. In: Santhanam, P., Begum, A., Pachiappan, P. (eds). Basic and Applied Zooplankton Biology. Springer, Singapore.
  21. Shanmugaarasu, V.; Kathiresan, K.; Ilanchelian, K. &Rajendran, N. 2018. Survival and growth of fish (Latescalcarifer) under integrated mangrove-aquaculture and open-aquaculture systems. Aquaculture Reports 9: 18-24.
  22. Sivakumar, K.; Nawaz, M.A. & Saboor, A. 2021. Population composition of calanoid copepods of the Chennai coast , Tamil Nadu. Indian Journal of Geo-marine sciences 50 (9): 693-700.
  23. Sukarni, Sudjito, Hamidi, N.; Yanuhar, U. &Wardana, I. N. G. 2014. Potential and properties of marine microalgae Nannochloropsisoculata as biomass fuel feedstock. International Journal of Energy and Environmental Engineering 5: 279-290.
  24. Tocher, D.R.; Bendiksen, E.Å.; Campbell, P.J. & Bell, J.G. 2008. The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280: 21-34.
  25. Valentin, T.; Arnold, M. & Igor, P. 2016. Rotifers enriched with a mixed algal diet promote survival, growth and development of barramundi larvae, Lates calcarifer (Bloch). Aquaculture Reports 3: 147-158.
  26. Vijayaraj, R.; Jayaprakashvel, M. & Altaff, K. 2022. Efficacy of Apocyclops royi (Cyclopoida, Copepoda) nauplii as live prey for the first feeding larvae of Silver Pompano, Trachinotus blochii (Lacepède, 1801). Asian Journal of Fisheries and Aquatic Research 20(4): 29-34.