Main Article Content

Abstract

A six-week trial was conducted to determine the effects of Tenebrio molitor larvae meal (TM) on growth performance and body composition of Asian seabass. A total of 240 Juvenile fish (whole body weight 35.42±0.12g) were randomly distributed into four groups with three replicates (tank capacity 300l) with a density of 20 fish per replicate in a recirculating system. Fish were fed with four diets including 0%, 20%, 40% and 60% of TM substitution. At the end of the experiment, there was no significant difference in growth performance and protein efficiency ratio (P>0.05). However, the condition factor and viscerosomatic index showed significant differences among the treatments (P<0.05). Chemical analysis of fish carcasses showed significant differences in moisture and ash among the treatments (P<0.05). There was no significant difference in moisture, ash and crude protein of the hepatopancreas (P>0.05). Nevertheless, the body lipid content increased gradually as the concentration of TM in the fed groups increased. Since there were no adverse effects on growth performance when using TM meal, therefore, it can be adopted as an alternative source of protein in the Asian sea bass diets.

Keywords

Fishmeal replacement Insect meal Saline groundwater Carcass composition

Article Details

Author Biography

Yazdan KEIVANY, Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran.

Associate Professor

How to Cite
ALGHADA, D., EBRAHIMI, E., KEIVANY, Y., & JALALI, S. A. H. (2023). Effects of substituting fishmeal by mealworm (Tenebrio molitor) on growth and composition of Asian seabass in saline ground waters. Iranian Journal of Ichthyology, 9(3), 165–174. https://doi.org/10.22034/iji.v9i3.891

References

  1. Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khalil, R.H.; Metwally, A.A.; Shakweer, M.S.; Ghetas, H.A. & Khallaf, M.A. 2021. Black soldier fly (Hermetia illucens) larvae meal in diets of European seabass: Effects on antioxidative capacity, non-specific immunity, transcriptomic responses, and resistance to the challenge with Vibrio alginolyticus. Review in Fisheries & Shellfish Immunology 111: 111–118.
  2. Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Dawood, M.A.O.; Menanteau-Ledouble, S. & El-Matbouli, M. 2020. Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: Review in Fisheries Science & Aquaculture 28(4): 1-28.
  3. Ambasankar, K.; Ali, S. & Syamadayal, J. 2009. Nutritional requirements of Asian seabass (Lates calcarifer). National Training on 'Cage Culture of Seabass' held at CMFRI, Kochi. pp. 60-65.
  4. Anil, M.K.; Santhosh, B.; Jasmine, S.; Saleela, K.N.; George, R.M.; Kingsly, H.J.; Unnikrishnan, C.; Rao, A.H. & Rao, G.S. 2010. Growth performance of the seabass (Lates calcarifer) in sea cage at Vizhinjam Bay along the southwest coast of India. Indian Journal of Fisheries 57(4): 65-69.
  5. AOAC, 2005. Official Method of Analysis. 17th edn., Washington. DC: Association of Official Analytical Chemists.
  6. Aquacop; Cuzon, G.; Chou, R. & Fuchs, J. 1989. Nutrition of the seabass. Advances in Tropical Aquaculture. Aquacop infremer. Actes de Colloque, 9 pp. 757-763.
  7. Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A. & Pérez-Bañón, C. 2014. The potential of various insect species for use as food for fish. Aquaculture 422-423, 193-201.
  8. Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I. & Gasco, L. 2015. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Italian Journal of Animal Sciences 14(4): 670-675.
  9. Berra, T. M. 2001. Freshwater Fish Distribution. Academic Press, San Diego, California.
  10. Dawood, M.A. & Koshio, S. 2020. Application of fermentation strategy in aquafeed for sustainable aquaculture. Reviews in Aquaculture 12(2): 987-1002.
  11. Dawood, M.A.; Koshio, S.; Ishikawa, M. & Yokoyama, S. 2015. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of amberjack, Seriola dumerili juveniles. Biomedical Research International Article ID 514196. pp. 1-11.
  12. De Haro, C.; Ramos-Bueno, R.P.; Barroso, F.G.; Sánchez-Muros, M.J.; Rincón-Cervera, M.A. & Guil-Guerrero, J.I. 2016. I Insect larvae as feed ingredient selectively increase arachidonic acid content in farmed gilthead seabream (Sparus aurata L.). Aquaculture Research 47: 2881-2887. https://doi.org/10.1111/are.12738.
  13. FAO 2014. In: Graziano da Silva, J. (Ed.), The State of World Fisheries and Aquaculture, Opportunities and Challenges. FAO, Rome p. 3. https://www.fao.org/3/I3720E/i3720e.•
  14. Froese, R. & Pauly, D. (eds.) 2022. Lates calcarifer (Bloch, 1790) barramundi. FishBase. http://www.fishbase.org. (Accessed on October 1, 2022)
  15. Galkanda-Arachchige, H.S.C.; Wilson, A.E. & Davis, D.A. 2020. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: A meta-analysis. Reviews in Aquaculture 12(3): 1624-1636.
  16. Gasco, L.; Belforti, M.; Rotolo, L.; Lussiana, C.; Parisi, G.; Terova, G.; Roncarati, A. & Gai, F. 2014a. Mealworm (Tenebrio molitor) as a potential ingredient in practical diets for rainbow trout (Oncorhynchus mykiss). In: Vantomme, P., Munke, C., van Huis, A. (Eds.), 1st International Conference "Insects to Feed the World". Wageningen University, Ede-Wageningen, the Netherlands, p. 69.
  17. Gasco, L.; Gai, F.; Piccolo, G.; Rotolo, L.; Lussiana, C.; Molla, P. & Chatzifotis, S. 2014b. 2014b. Substitution of fishmeal by Tenebrio molitor meal in the diet of Dicentrarchus labrax juveniles. In Proceedings of the 1st International Conference “Insects to Feed the World”, Ede-Wageningen, the Netherlands. 70 p.
  18. Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P. & Chatzifotis, S. 2016. Tenebrio molitor meal in diets for European seabass (Dicentrarchus labrax L.) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Journal of Animal Feed Science Technology 220: 34-45.
  19. Glencross, B.D. 2006. Nutritional management of barramundi (Lates calcarifier). A review in Aquaculture Nutrition 12: 291-309.
  20. Goddard, S.; Harms, S.; Reichenbach, S.; Tadesse, T. & Waltman, W.J. 2003. Geospatial decision support for drought risk management. Communication of the ACM 46: 35-37.
  21. Harsij, M.; Adineh, H.; Maleknejad, R.; Jafaryan, H. & Asadi, M. 2019. The use of live mealworm (Tenebrio molitor) in diet of rainbow trout (Oncorhynchus mykiss): Effect on growth performance and survival, nutritional efficiency, carcass compositions and intestinal digestive enzymes. Journal of Agricultural Sciences & Technology 8(3): 137-143.
  22. Henry, M.; Gasco, L.; Piccolo, G. & Fountoulaki, E. 2015. Review on the use of insects in the diet of farmed fish: Past and future. Animal Feed Science & Technology 203: 1-22.
  23. Hoffmann, L.; Rawski, M.; Nogales-Merida, S. & Mazurkiewicz, J. 2020. Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Annuals of Animal Science 20(2): 579-598.
  24. Howe, E.R.; Simenstad, C.A.; Toft, J.D.; Cordell, J.R. & Bollens, S.M. 2014. Macroinvertebrate prey availability and fish diet selectivity in relation to environmental variables in natural and restoring north San Francisco bay tidal marsh channels. San Francisco Estuary & Watershed Science (SFEWS). 12(1).
  25. Khan, S.; Khan, R.U.; Alam, W. & Sultan, A. 2018. Evaluating the nutritive profile of three insect meals and their effects to replace soya bean in broiler diet. Journal of Animal Physiology & Animal Nutrition 102(2): e662-e668.
  26. Iaconisi, V.; Marono, S.; Parisi, G.; Gasco, L.; Genovese, L.; Maricchiolo, G.; Bovera, F. & Piccolo, G. 2017. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot seabream (Pagellus bogaraveo). Aquaculture 476, 49-58.
  27. Iaconisi, V.; Secci, G.; Sabatino, G.; Piccolo, G.; Gasco, L. & Papini, A.M., 2019. Effect of mealworm (Tenebrio molitor) larvae meal on amino acid composition of gilthead seabream (Sparus aurata L.) and rainbow trout (Oncorhynchus mykiss W.) fillets. Aquaculture 513: 734403.
  28. Jafari, R. & Hasheminasab, S. 2017. Assessing the effects of dam building on land degradation in central Iran with Landsat LST & LULC time series. Environmental Monitoring & Assessment 189: 1-15.
  29. Jeong, S.M.; Khosravi, S.; Mauliasari, I.R. & Lee, S.M. 2020. Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Journal of Fisheries & Aquatic Sciences 23(1): 1-8
  30. Józefiak, A.; Nogales-Mérida, S.; Rawski, M.; Kiero´nczyk, B. & Mazurkiewicz, J. 2019. Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Veterinary Research 15(1): 1-11.
  31. Mastoraki, M.; Mollá Ferrándiz, P.; Vardali, S.C.; Kontodimas, D.C.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S. & Antonopoulou, E. 2020. A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European seabass (Dicentrarchus labrax L.). Aquaculture 528: 735511.
  32. Munshi, J.S.D. & Dutta, H. 1996. Fish Morphology: Horizon of New Research. Science Publishers, Inc., USA. 434 p.
  33. Nandakumar, S.; Ambasankar, K.; Syamadayal, J.; Raman, C. & Ali, S.R. 2013. Fish meal replacement with chicken waste meal in Asian seabass (Lates calcarifer) feeds. Indian Journal of Fisheries 60(2): 109–114.
  34. Ng, W.K.; Liew, F.L.; Ang, L.P. & Wong, K.W. 2001. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish (Clarias gariepinus). Aquaculture Research 32: 273-280.
  35. Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kiero´ nczyk, B. & Józefiak, A. 2019. Insect meals in fish nutrition. Reviews in Aquaculture 11: 1080-1103.
  36. Osimani, A.; Garofalo, C.; Milanovi´c, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; Riolo, P.; Isidoro, N. & Clementi, F. 2016. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. European Food Research & Technology 243: 1157-1171.
  37. Piccolo, G.; Marono, S.; Gasco, L.; Iannaccone, F.; Bovera, F. & Nizza, A., 2014. Use of Tenebrio molitor larvae meal in diets for Gilthead seabream (Sparus aurata) juveniles. In Proceedings of the 1st International Conference “Insects to Feed the World”, Ede-Wageningen, The Netherlands. 14-17. 68p.
  38. Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F. & Parisi, G. 2017. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead seabream (Sparus aurata). Animal Feed Science & Technology 226: 12-20.
  39. Redman, D.H.; Nelson, D.A.; Roy, J.; Goldberg, R.; Scott, T.M.; Rust, M.B. & Mercaldo-Allen, R. 2019. A pilot study using graded yellow mealworm (Tenebrio molitor) meal in formulated diets for growth performance of black seabass (Centropristis striata). Noaa Technology Memoirs Nmfs-Ne-253: 1-15.
  40. Rema, P.; Saravanan, S.; Armenjon, B.; Motte, C. & Dias, J. 2019. Graded incorporation of defatted yellow mealworm (Tenebrio molitor) in rainbow trout (Oncorhynchus mykiss) diet improves growth performance and nutrient retention. Animals 9(4): 187.
  41. Roncarati, A.; Gasco, L.; Parisi, G. & Terova, G. 2015. Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. Journal of Insects for Food and Feed 1(3): 233-240.
  42. Sánchez-Muros, M.J.; de Haro, C.; Sanz, A.; Trenzado, C.E.; Villareces, S. & Barroso, F.G. 2016. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition 22(5): 943-955.
  43. Sankian, Z.; Khosravi, S.; Kim, Y.O. & Lee, S.M. 2018. Effects of dietary inclusion of yellow mealworm (Tenebrio molitor) meal on growth performance, feed utilization, body composition, plasma biochemical indices, selected immune parameters and antioxidant enzyme activities of mandarin fish (Siniperca scherzeri) juveniles. Aquaculture 496: 79-87.
  44. Su, J.; Gong, Y.; Cao, S.; Lu, F.; Han, D.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X. & Xie, S. 2017. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish & Shellfish Immunology 69: 59-66.
  45. Venkatachalam, S.; Kandasamy, K.; Krishnamoorthy, I. & Narayanasamy, R. 2018. Survival and growth of fish Lates calcarifer under integrated mangrove aquaculture and open-aquaculture systems. Aquaculture 9: 18-24.
  46. Wang, F.; Pan, X.; Wang, D.; Shen, C. & Lu, Q. 2013. Combating desertification in China: Past, present and future. Land Use Policy 31: 311-313.
  47. Wang, H.C.; Liao, H.Y. & Chen, H.L. 2012. Tenebrio small-scale ecological farming feasibility study. Advanced Material Research 356: 267-270.
  48. Wang, L.K.; Zheng, Y.; Jiang, Z.X.; Xie, R.L. & Bureau, D. 2009. Replacing fish meal with rendered animal protein ingredients in diets for Malabar Grouper, (Epinephelus malabaricus), reared in net pens. Journal of World Aquaculture Society 40: 67-75.
  49. Whitley, S.N. & Bollens, S.M. 2014. Fish assemblages across a vegetation gradient in a restoring tidal freshwater wetland: diets and potential for resource competition. Environmental Biology of Fishes 97: 659-674.