Use of fish model in modern biological experimentation: Synthesis and review

Asit Kumar BERA, Uttam Kumar SARKAR, Debendra Nath DEY, Sadrupa BHOWMICK, Basanta Kumar DAS

Abstract

Globally animal models play very important role in the progress of life science in a wide range of biological experimentations. Suitability of different animal model relies on its similarity in genetic makeup, resemble physiological response on diseases of multiple etiology and different drugs, easy maintenance of model animal. Among the fishes, zebrafish and some other species like killifish and cave fish has been found to have great potential and being experimented as an alternative model animal for experimentation of some specific human diseases. Metadata analysis with relevant keywords revealed >8000 research publications on fish model in last 12 years. In India, zebrafish, Danio rerio (Hamilton, 1822), is widely distributed. However, very less attention has so far been paid to understand the importance of the species in biological experimentation except few scattered reports. Besides zebrafish, use of African killifish and cave fish has also been outlined. The present paper synthesized the current knowledge of research and discussed the status and potentials of fish as a model in modern biological experimentation in various medical disorders and recommends their utilization for drug discovery and critical human disease modelling.

Keywords

Danio rerio, Killifish, Metadata, Biomedical research.

Full Text:

PDF

References

Aich, A.; Goswami, A.R.; Roy, U.S. & Mukhopadhyay, S.K. 2015. Ecotoxicological assessment of tannery effluent using guppy fish (Poecilia reticulata) as an experimental model: a biomarker study. Journal of Toxicology & Environmental Health Part A 78: 278-286.

Anderson, D. & Kodukula, K. 2014. Biomarkers in pharmacology and drug discovery. Biochemical Pharmacology 87: 172-188.

Asaoka, Y.; Terai, S.; Sakaida, I. & Nishina, H. 2013. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Disease Models & Mechanisms 6: 905-914.

Avery-Kiejda, K.A.; Bowden, N.A.; Croft, A.J.; Scurr, L.L.; Kairupan, C.F.; Ashton, K.A.; Talseth-Palmer, B.A.; Rizos, H.; Zhang, X.D. & Scott, R.J. 2011. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer 11: 203.

Bagra, K.; Kadu, K.; Nebeshwar-Sharma, K.; Laskar, B.A.; Sarkar, U.K. & Das, D.N. 2009. Ichthyological survey and review of the checklist of fish fauna of Arunachal Pradesh, India. Check List 5: 330-350.

Barriuso, J.; Nagaraju, R. & Hurlstone, A. 2015. Zebrafish: A new companion for translational research in oncology. Clinical Cancer Research 21: 969-975.

Bera, A.K.; Rana, T.; Bhattacharya, D.; Das, S.; Pan, D. & Das, S.K. 2011. Sodium arsenite-induced alteration in hepatocyte function of rat with special emphasis on superoxide dismutase expression pathway and its prevention by mushroom lectin. Basic and Clinical Pharmacology and Toxicology 109: 240-244.

Bhattacharya, M.; Ghosh, S.; Malick, R.C.; Patra., B.C. & Das, B.K. 2018. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 679: 202-211.

Boyd, R.T., 2013. Therapeutic targeting of nicotinic acetylcholine receptors: From Alzheimer's to zebrafish. Biochemistry and Analytical Biochemistry 2: 4.

Bueters, T.; Ploeger, B.A. & Visser, S.A. 2013. The virtue of translational PKPD modeling in drug discovery: Selecting the right clinical candidate while sparing animal lives. Drug Discovery Today 18: 853-862.

Burma, D.; Nag, B. & Tewari, D. 1983. Association of 16S and 23S ribosomal RNAs to form a bimolecular complex. Proceedings of the National Academy of Sciences 80: 4875-4878.

Casiano, C.P.; Matheson, A. & Traut, R. 1990. Occurrence in the archaebacterium Sulfolobus solfataricus of a ribosomal protein complex corresponding to Escherichia coli (L7/L12) 4. L10 and eukaryotic (P1) 2/(P2) 2. P0. Journal of Biological Chemistry 265: 18757-18761.

Carnovali, M.; Banfi, G. & Mariotti, M. 2019. Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together. BioMed Research International 2019: 1253710.

Cha, S.H.; Hwang, Y.; Kim, K.N. & Jun, H.S. 2018. Palmitate induces nitric oxide production and inflammatory cytokine expression in zebrafish. Fish & Shellfish Immunology 79: 163-167.

Chablais, F.; Veit, J.; Rainer, G. & Jaźwińska, A. 2011. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Developmental Biology 11: 21.

Chi, N.C.; Shaw, R.M.; Jungblut, B.; Huisken, J.; Ferrer, T.; Arnaout, R.; Scott, I.; Beis, D.; Xiao, T. & Baier, H. 2008. Genetic and physiologic dissection of the vertebrate cardiac conduction system. PLoS Biology 6: e109.

Dang, M.: Fogley, R. & Zon, L.I. 2016. Identifying novel cancer therapies using chemical genetics and zebrafish. In: Langenau, D.M. (ed.), Cancer and Zebrafish. Springer, Cham. pp: 103-124.

Dey, D.; Bochkariov, D.E.; Jokhadze, G.G. & Traut, R.R. 1998. Cross-linking of selected residues in the N-and C-terminal domains of Escherichia coli protein L7/L12 to other ribosomal proteins and the effect of elongation factor Tu. Journal of Biological Chemistry 273: 1670-1676.

Dey, D. & Burma, D. 1991. Polyclonal antibodies as probes to distinguish between tight and loose couple 50S ribosomes of Escherichia coli. Indian Journal of Biochemistry and Biophysics 28: 369-373.

Dey, L. & Attele, A. 2003. Alternative therapies for type 2. Textbook of Complementary and Alternative Medicine 267 p.

Dey, D.; Chaskar, S.; Athavale, N. & Chitre, D. 2014. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238. Phytotherapy Research 28: 1479-85.

Dey, D.; Chaskar, S.; Athavale, N. & Chitre, D. 2015. Acute and chronic toxicity, cytochromep 450 enzyme inhibition, and HERG channel blockade studies with a polyherbal, ayurvedic formulation for inflammation. BioMed Research International.

Di Cicco, E.; Tozzini, E.T.; Rossi, G. & Cellerino, A. 2011. The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Experimental Gerontology 46: 249-256.

Diep, C.Q.; Ma, D.; Deo, R.C.; Holm, T.M.; Naylor, R.W.; Arora, N.; Wingert, R.A.; Bollig, F.; Djordjevic, G. & Lichman, B. 2011. Identification of adult nephron progenitors capable of kidney regeneration in zebrafish. Nature 470: 95-100.

Elbaghdady, H.A.M.; Alwaili, M.A. & El-Demerdash, R.S. 2018. Regenerative potential of bone marrow mesenchymal stem cells on cadmium chloride-induced hepato-renal injury and testicular dysfunction in sprague dawley rats. Ecotoxicology and Environmental Safety 164: 41-49.

Fan, J. & de Lannoy, I.A. 2014. Pharmacokinetics. Biochemical Pharmacology 87(1): 93-120

Fishman, M.C. 2001. Zebrafish - the canonical vertebrate. Science 294: 1290-1291.

Foglia, M.J. & Poss, K.D. 2016. Building and re-building the heart by cardiomyocyte proliferation. Development 143: 729-740.

Fonseka, T.M.; Wen, X.Y.; Foster, J.A. & Kennedy, S.H. 2016. Zebrafish models of major depressive disorders. Journal of Neuroscience Research 94: 3-14.

Gallardo, V.E.; Varshney, G.K.; Lee, M.; Bupp, S.; Xu, L.; Shinn, P.; Crawford, N.P.; Inglese, J. & Burgess, S.M. 2015. Phenotype-driven chemical screening in zebrafish for collective cell migration inhibitors identifies multiple potential pathways for targeting metastasis. Disease Models & Mechanisms 8(6): 565-576.

Genade, T., Benedetti, M., Terzibasi, E., Roncaglia, P., Valenzano, D.R., Cattaneo, A., Cellerino, A., 2005. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4: 223-233.

Genge, C.E.; Lin, E.; Lee, L.; Sheng, X.; Rayani, K.; Gunawan, M.; Stevens, C.M.; Li, A.Y.; Talab, S.S. & Claydon, T.W. 2016. The zebrafish heart as a model of mammalian cardiac function. Reviews of Physiology Biochemistry & Pharmacology 171: 99-136.

Gerlach, G.F.; Morales, E.E. & Wingert, R.A. 2015. Microbead implantation in the zebrafish embryo. Journal of Visualized Experiments 101: e52943.

Grunwald, D.J. & Eisen, J.S. 2002. Headwaters of the zebrafish-emergence of a new model vertebrate. Nature Reviews Genetics 3: 717-24.

Gutala, R.; Wang, J.; Kadapakkam, S. & Hwang, Y. 2004. Microarray analysis of ethanol-treated cortical neurons reveals disruption of genes related to the ubiquitin-proteasome pathway and protein synthesis. Alcoholism: Clinical and Experimental Research 28: 1779–1788.

Haesemeyer, M. & Schier, A.F. 2015. The study of psychiatric disease genes and drugs in zebrafish. Current Opinion in Neurobiology 30: 122-130.

Harel, I. & Brunet, A. 2015. The African turquoise killifish: A model for exploring vertebrate aging and diseases in the fast land. Cold Spring Harbor Symposia on Quantitative Biology 80: 275-279.

Hartmann, N.; Reichwald, K.; Lechel, A.; Graf, M.; Kirschner, J.; Dorn, A.; Terzibasi, E.; Wellner, J.; Platzer, M. & Rudolph, K.L. 2009. Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mechanisms of Ageing & Development 130: 290-296.

Higa-Nakamine, S.; Suzuki, T.; Uechi, T.; Chakraborty, A.; Nakajima, Y.; Nakamura, M.; Hirano, N.; Suzuki, T. & Kenmochi, N. 2012. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Research 40: 391-398.

Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; Mclaren, K. & Matthews, L. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498-503.

Hu, C.K. & Brunet, A. 2018. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell 17: e12757.

Ishaq, O.; Sadanandan, S.K. & Wählby, C. 2017. Deep fish: Deep learning–based classification of zebrafish deformation for high-throughput screening. SLAS Discovery: Advancing Life Sciences R&D 22(1): 102-107.

Jeffery, W.R. 2001. Cavefish as a model system in evolutionary developmental biology. Developmental Biology 231: 1-12.

Jopling, C.; Sleep, E.; Raya, M.; Martí, M.; Raya, A. & Belmonte, J.C.I. 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464: 606-9.

Kim, S.S.; Im, S.H.; Yang, J.Y.; Lee, Y.-R.; Kim, G.R.; Chae, J.S.; Shin, D.S.; Song, J.S.; Ahn, S. & Lee, B.H. 2017. Zebrafish as a screening model for testing the permeability of blood-brain barrier to small molecules. Zebrafish 14: 322-330.

Kirschner, J.; Weber, D.; Neuschl, C.; Franke, A.; Böttger, M.; Zielke, L.; Powalsky, E.; Groth, M.; Shagin, D. & Petzold, A. 2012. Mapping of quantitative trait loci controlling lifespan in the short‐lived fish Nothobranchius furzeri-a new vertebrate model for age research. Aging Cell 11: 252-261.

Knöll, R.; Postel, R.; Wang, J.; KräTzner, R.; Hennecke, G.; Vacaru, A.M.; Vakeel, P.; Schubert, C.; Murthy, K. & Rana, B.K. 2007. Clinical Perspective. Circulation 116: 515-525.

Kokel, D. & Peterson, R.T. 2011. Using the zebrafish photomotor response for psychotropic drug screening. Methods in Cell Biology 105: 517-524.

Kumari, R.; Silic, M.R.; Jones-Hall, Y.L.; Nin-Velez, A.; Yang, J.-Y.; Mittal, S.K. & Zhang, G. 2018. Identification of RECK as an evolutionarily conserved tumor suppressor gene for zebrafish malignant peripheral nerve sheath tumors. Oncotarget 9(34): 23494.

Landgraf, K.; Schuster, S.; Meusel, A.; Garten, A.; Riemer, T.; Schleinitz, D.; Kiess, W. & Körner, A. 2017. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiology 17: 4.

Lawrence, C. & Mason, T. 2012. Zebrafish housing systems: A review of basic operating principles and considerations for design and functionality. ILAR Journal 53: 179-191.

Lepilina, A.; Coon, A.N.; Kikuchi, K.; Holdway, J.E.; Roberts, R.W.; Burns, C.G. & Poss, K.D. 2006. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127: 607-619.

Li, J.M.; Li, L.Y.; Qin, X.; Degrace, P.; Demizieux, L.; Limbu, S.M.; Wang, X.; Zhang, M.-L.; Li, D.L. & Du, Z.Y. 2018. Inhibited carnitine synthesis causes systemic alteration of nutrient metabolism in zebrafish. Frontiers in Physiology 9: 509.

Lin, C.Y.; Chiang, C.Y. & Tsai, H.J. 2016. Zebrafish and Medaka: New model organisms for modern biomedical research. Journal of Biomedical Science 23: 19.

Liu, Y.; Asnani, A.; Zou, L.; Bentley, V.L.; Yu, M.; Wang, Y.; Dellaire, G.; Sarkar, K.S.; Dai, M. & Chen, H.H. 2014. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Science Translational Medicine 6: 266ra170-.

Lopes, F.M.; Sandrini, J.Z. & Souza, M.M. 2018. Toxicity induced by glyphosate and glyphosate-based herbicides in the zebrafish hepatocyte cell line (ZF-L). Ecotoxicology & Environmental Safety 162: 201-207.

Lu, J.W.; Ho, Y.J.; Yang, Y.J.; Liao, H.A.; Ciou, S.C.; Lin, L.I. & Ou, D.L. 2015. Zebrafish as a disease model for studying human hepatocellular carcinoma. World Journal of Gastroenterology 21(42): 12042.

MacRae, C.A. & Peterson, R.T. 2015. Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery 14: 721-31.

Maddula, K. & Juluru, A. 2016. Zebrafish in biomedical research and drug discovery. Journal of Pharmacology and Toxicological Studies 4: 134-42.

Maupas, E. 1900. Modes et formes de reproduction des nématodes. Archives de Zologie Expérimentale et Eénérale 8: 463-624.

McGonigle, P. & Ruggeri, B. 2014. Animal models of human disease: Challenges in enabling translation. Biochemical Pharmacology 87: 162-171.

Miceli, R.; Kroeger, P. & Wingert, R. 2014. Molecular mechanisms of podocyte development revealed by zebrafish kidney research. Cell and Developmental Biology 3: 1000138.

Millburn, G.H.; Crosby, M.A.; Gramates, S.L. & Tweedie, S. 2016. FlyBase portals to human disease research using Drosophila models. Disease Models & Mechanisms 9: 245-252.

Nag, P.; Kim, J.; Sapiega, V.; Landay, A.L.; Bremer, J.W.; Laingam, S.; Mestecky, J.; Reichelderfer, P.; Kovacs, A. & Cohn, J. 2004. Women with cervicovaginal antibody-dependent cell-mediated cytotoxicity have lower genital HIV-1 RNA loads. The Journal of Infectious Diseases 190: 1970-1978.

Newman, M.; Ebrahimie, E. & Lardelli, M. 2014. Using the zebrafish model for Alzheimer’s disease research. Frontiers in Genetics 5: 189.

Niccoli, T. & Partridge, L. 2012. Ageing as a risk factor for disease. Current Biology 22: R741-R752.

Noller, H.F.; Green, H.; Heilek, G.; Hoffarth, V.; Hüttenhofer, A.; Joseph, S.; Lee, I.; Lieberman, K.; Mankin, A. & Merryman, C. 1995. Structure and function of ribosomal RNA. Biochemistry & Cell Biology 73: 997-1009.

Ortiz, J.G. 2014. Zebrafish as a screening tool for psychoactive incenses. Journal of Addiction Research and Therapy 5: 3.

Owens, K.N.; Santos, F.; Roberts, B.; Linbo, T.; Coffin, A.B.; Knisely, A.J.; Simon, J.A.; Rubel, E.W. & Raible, D.W. 2008. Identification of genetic and chemical modulators of zebrafish mechanosensory hair cell death. PLOS Genetics 4: e1000020.

Pandey, G. 2011. A review of fish model in experimental pharmacology. International Research Journal of Pharmacy 2(9): 33-36.

Patton, E.E.; Widlund, H.R.; Kutok, J.L.; Kopani, K.R.; Amatruda, J.F.; Murphey, R.D.; Berghmans, S.; Mayhall, E.A.; Traver, D. & Fletcher, C.D. 2005. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology 15: 249-254.

Porrello, E.R.; Mahmoud, A.I.; Simpson, E.; Hill, J.A.; Richardson, J.A.; Olson, E.N. & Sadek, H.A. 2011. Transient regenerative potential of the neonatal mouse heart. Science 331: 1078-1080.

Rahman, S.M.; Eckelman, M.J.; Onnis-Hayden, A. & Gu, A.Z. 2018. Comparative Life Cycle Assessment of Advanced Wastewater Treatment Processes for Removal of Chemicals of Emerging Concern. Environmental Science & Technology 52: 11346-11358.

Rana, T.; Bera, A.K.; Das, S.; Bhattacharya, D.; Pan, D. & Das, S.K. 2012. Metabolic adaptations to arsenic‐induced oxidative stress in male wistar rats. Journal of Biochemical and Molecular Toxicology 26: 109-116.

Rana, T.; Bera, A.K.; Das, S.; Bhattacharya, D.; Pan, D. & Das, S.K. 2016. Inhibition of oxidative stress and enhancement of cellular activity by mushroom lectins in arsenic induced carcinogenesis. Asian Pacific Journal of Cancer Prevention 17: 4185-4197.

Reaven, G.M. 1993. Role of insulin resistance in human disease (syndrome X): An expanded definition. Annual Review of Medicine 44: 121-131.

Reiter, P. 2001. Climate change and mosquito-borne disease. Environmental Health Perspectives 109: 141-161.

Riddle, M.R.; Aspiras, A.C.; Gaudenz, K.; Peuß, R.; Sung, J.Y.; Martineau, B.; Peavey, M.; Box, A.C.; Tabin, J.A. & Mcgaugh, S. 2018. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555: 647-651.

Rihel, J.; Prober, D.A. & Schier, A.F. 2010. Monitoring sleep and arousal in zebrafish. Methods in Cell Biology 100: 281-294.

Riley, P.R. & Smart, N. 2009. Thymosin β4 induces epicardium-derived neovascularization in the adult heart. Biochemical Society Transactions 37: 1218-1220.

Rout, A.K.; Dehury, B.; Maharana, J.; Nayak, C.; Baisvar, V.S.; Behera, B.K. & Das, B.K. 2018. Deepinsights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependentprotein kinase-like 1 (zCDKL1): A molecular dynamics approach. Journal of Molecular Graphics & Modelling 81: 175-183.

Ruzicka, L.; Howe, D.G.; Ramachandran, S.; Toro, S.; Van Slyke, C.E.; Bradford, Y.M.; Eagle, A.; Fashena, D.; Frazer, K.; Kalita, P.; Mani, P.; Martin, R.; Moxon, S.T.; Paddock, H.; Pich, C.; Schaper, K.; Shao, X.; Singer, A. & Westerfield, M. 2018. The Zebrafish Information Network: New support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources. Nucleic acids research 47: D867-D873.

Santoriello, C. & Zon, L.I. 2012. Hooked! Modeling human disease in zebrafish. Journal of Clinical Investigation 122: 2337-2343.

Sarkar, S.; Mukherjee, S.; Chattopadhyay, A. & Bhattacharya, S. 2017. Differential modulation of cellular antioxidant status in zebrafish liver and kidney exposed to low dose arsenic trioxide. Ecotoxicology & Environmental Safety 135: 173-182.

Sarkar, U.; Pathak, A.; Sinha, R.; Sivakumar, K.; Pandian, A.; Pandey, A.; Dubey, V. & Lakra, W. 2012. Freshwater fish biodiversity in the River Ganga (India): Changing pattern, threats and conservation perspectives. Reviews in Fish Biology & Fisheries 22: 251-272.

Sarkar, U.K.; Pathak, A.K.; Tyagi, L.K.; Srivastava, S.M.; Prakash Singh, S.P. & Kumar Dubey, V.K. 2013. Biodiversity of freshwater fish of a protected river in India: Comparison with unprotected habitat. Revista de Biologia Tropical 61: 161-172.

Schlegel, A. 2016. Zebrafish models for dyslipidemia and atherosclerosis research. Frontiers in Endocrinology 7: 159.

Seth, A.; Stemple, D.L. & Barroso, I. 2013. The emerging use of zebrafish to model metabolic disease. Disease Models & Mechanisms 6: 1080-1088.

Sharma, M.; Mandloi, A.; Pandey, G. & Shrivastav, A. 2012. Transgenic fish model in environmwntal toxicology. International Research Journal of Pharmacy 3: 37-40.

Shaye, D.D. & Greenwald, I. 2011. OrthoList: A compendium of C. elegans genes with human orthologs. PloS One 6(5): e20085.

Shen, Z.G.; Yao, H.; Guo, L.; Li, X.X. & Wang, H.P. 2017. Ribosome RNA Profiling to Quantify Ovarian Development and Identify Sex in Fish. Scietific Reports 7: 4196.

Shim, Y.H. & Paik, Y.K. 2010. Caenorhabditis elegans proteomics comes of age. Proteomics 10: 846-857.

Stanton, M.F. 1965. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, Brachydanio rerio. Journal of the National Cancer Institute 34(1): 117-130.

Sturtevant, A. 1959. Thomas Hunt Morgan: biographical memoirs. National Academy of Sciences 33: 295

Sundin, J.; Morgan, R.; Finnøen, M.H.; Dey, A.; Sarkar, K. & Jutfelt, F. 2019. On the Observationof Wild Zebrafish (Danio rerio) in India. Zebrafish 16(6): 546-553.

Swanhart, L.M.; Cosentino, C.C.; Diep, C.Q.; Davidson, A.J.; De Caestecker, M. & Hukriede, N.A. 2011. Zebrafish kidney development: Basic science to translational research. Birth Defects Research Part C: Embryo Today: Reviews 93: 141-156.

Talwar, P.K. & Jhingran, A. G. 1991. Inland Fishes of India and Adjacent Countries: Oxford-IBH Publishing Co. Pvt. Ltd., New Delhi, 1158 p.

Teame, T.; Zhang, Z.; Ran, C.; Zhang, H.; Yang, Y.; Ding, Q.; Xie, M.; Gao, C.; Ye, Y.; Duan, M. & Zhou, Z. 2019. The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers 9(3): 68-77.

Terzibasi, E.; Valenzano, D.R.; Benedetti, M.; Roncaglia, P.; Cattaneo, A.; Domenici, L. & Cellerino, A. 2008. Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PloS One 3(12): e3866.

Torres-Hernández, B.A.; Del Valle-Mojica, L.M. & Ortíz, J.G. 2015. Valerenic acid and Valeriana officinalis extracts delay onset of Pentylenetetrazole (PTZ)-Induced seizures in adult Danio rerio (Zebrafish). BMC Complementary and Alternative Medicine 15(1): 1-10.

Traut, R.R.; Dey, D.; Bochkariov, D.E.; Oleinikov, A.V.; Jokhadze, G.G.; Hamman, B. & Jameson, D. 1995. Location and domain structure of Escherichia coli ribosomal protein L7/L12: site specific cysteine cross-linking and attachment of fluorescent probes. Biochemistry & Cell Biology 73: 949-958.

Ugur, B.; Chen, K. & Bellen, H.J. 2016. Drosophila tools and assays for the study of human diseases. Disease Models and Mechanisms 9: 235-244. Valenzano, D.R.; Kirschner, J.; Kamber, R.A.; Zhang, E.; Weber, D.; Cellerino, A.; Englert, C. Platzer, M.; Reichwald, K. & Brunet, A. 2009. Mapping loci associated with tail color and sex determination in the short-lived fish Nothobranchius furzeri. Genetics 183(4):1385-95.

Valenzano, D.R.; Terzibasi, E.; Cattaneo, A.; Domenici, L. & Cellerino, A. 2006. Temperature affects longevity and age‐related locomotor and cognitive decay in the short‐lived fish Nothobranchius furzeri. Aging Cell 5: 275-278.

Vaz, R.L.; Outeiro, T.F. & Ferreira, J.J. 2018. Zebrafish as an animal model for drug discovery in Parkinson’s disease and other movement disorders: A systematic review. Frontiers in Neurology 9: 347.

Veinotte, C.J.; Dellaire, G. & Berman, J.N. 2014. Hooking the big one: The potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Disease Models & Mechanisms 7: 745-754.

Vishwanath, W.; Ng, H.; Britz, R.; Singh, L.; Chaudhry, S. & Conway, K. 2010. The status and distribution of freshwater fishes of the Eastern Himalaya region. Allen, D.J., Molur, S. & Daniel, B.A. (eds.), The Status and Distribution of Freshwater Biodiversity in the Eastern Himalaya. Cambridge, UK and Gland, IUCN, Switzerland and Zoo Outreach Organisation, Coimbatore, India. pp. 22-41.

White, R.M.; Cech, J.; Ratanasirintrawoot, S.; Lin, C.Y.; Rahl, P.B.; Burke, C.J.; Langdon, E.; Tomlinson, M.L.; Mosher, J. & Kaufman, C. 2011. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471: 518-22

Wilkinson, R.N.; Jopling, C. & Van Eeden, F.J. 2014. Zebrafish as a model of cardiac disease. Progress in Molecular Biology & Translational Science 124: 65-91.

Williams, C.H.; Hempel, J.E.; Hao, J.; Frist, A.Y.; Williams, M.M.; Fleming, J.T.; Sulikowski, G.A.; Cooper, M.K.; Chiang, C. & Hong, C.C. 2015. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition. Cell Reports 11: 43-50.

Yang, F.; Gao, C.; Wang, P.; Zhang, G.J. & Chen, Z. 2016. Fish-on-a-chip: Microfluidics for zebrafish research. Lab on a Chip 16: 1106-1125.

Zang, L.; Shimada, Y. & Nishimura, N. 2017. Development of a novel zebrafish model for Type 2 diabetes mellitus. Scientific Reports 7: 1461.

Zhang, F.; Dey, D.; Bränström. R.; Forsberg, L.; Lu, M.; Zhang, Q. & Sjöholm, A. 2009. BLX-1002, a novel thiazolidinedione with no PPAR affinity, stimulates AMP-activated protein kinase activity, raises cytosolic Ca2+, and enhances glucose-stimulated insulin secretion in a PI3K-dependent manner. American Journal of Physiology-Cell Physiology 296: 346-54.

Zhang, B.; Salituro, G.; Szalkowski, D.; Li, Z.; Zhang, Y.; Royo, I.; Vilella, D.; Dı́Ez, M.T.; Pelaez, F. & Ruby, C. 1999. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284: 974-977.

Zhang, B.; Xuan, C.; Ji, Y.; Zhang, W. & Wang, D. 2015. Zebrafish xenotransplantation as a tool for in vivo cancer study. Familial Cancer 14: 487-493.

Zhang, J.; Tang, M. & Viikari, L. 2012. Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresource Technology 121: 8-12.

Zhu, Q.L.; Guo, S.N.; Yuan, S.S.; Lv, Z.M.; Zheng, J.L. & Xia, H. 2017. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish. Aquatic Toxicology 191: 1-9.

Zhu, Q.L.; Li, W.Y. & Zheng, J.L. 2018. Life-cycle exposure to cadmium induced compensatory responses towards oxidative stress in the liver of female zebrafish. Chemosphere 210: 949-957.

Refbacks

  • There are currently no refbacks.