Morphometric variation of Cork fish (Channa striata Bloch, 1793) from nine populations in Sumatra Island, Indonesia

Boby MUSLIMIN, Rustadi RUSTADI, Hardaningsih HARDANINGSIH, Bambang RETNOAJI

Abstract

The geographic isolation and specific character of local habitat could cause variation of morphological characteristics among Cork fish population in different locations. The plasticity of cork fish to adapt to the environment factors possibly has an impact on the different of specific morphological on fish population at different habitat. This study was conducted to investigate the traditional morphometric measurement and truss network differentiation of cork fish populations in different locations at Sumatra Island. Total of 394 cork fish specimens (consisting of 198 males and 196 females) were collected from nine different areas of rivers, swamp and lakes. The samples were analysed based on 14 morphometric (M) and 21 Truss Network Measurement (TNM) characters to find out the significant correlation of the fish on each area sampling. The transformed datasets were proceeded to multivariate testing using Discriminant Function Analysis (DFA) and Cluster Analysis (CA). The results showed that cork fish had 20 distinguishing predominant characters in the head and back of the body. Based on cluster analysis, those fishes were divided into 4 groups depending on geographical isolation except one floodplain population that differs from the other population groups. We revealed that phenotypic dimorphism for female cork fish had a dominant size compared to males in head region and tail fin region. Cork fish in the lake had a dominant body height size compared to rivers and flooded swamps.

Keywords

Biodiversity, Inlandwater fishes, Morphology, Snakehead Fish.

Full Text:

PDF

References

Adamson, E.A.S.; Hurwood, D.A. & Mather, P.B. 2010. A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration. Molecular Phylogenetics and Evolution 56: 707-717.

Benziger, A.; Philip, S.; Raghavan, R.; Anvar Ali, P.H.; Sukumaran, M.; Tharian, J.C.; Dahanukar, N.; Baby, F.; Peter, R.; Devi, K.R.; Radhakrishnan, K.V.; Haniffa, M.A.; Britz, R. & Antunes, A. 2011. Unraveling a 146 years old taxonomic puzzle: validation of malabar snakehead, species-status and its relevance for channid systematics and evolution. PLoS ONE 6: 1-12.

Cheng, F.; Zhao, S.; Schmidt, B.V.; Ye, L. & Hallerman, E.M. 2018. Morphological but no genetic differentiation among fragmented populations of Hemiculter leucisculus (Actinopterygii, Cyprinidae) from a lake complex in the middle Yangtze, China. Hydrobiologia 809:185-200

Christensen, M.S. 1993. The artisanal fishery of the Mahakam River floodplain in East Kalimantan, Indonesia. Journal of Applied Ichthyology 9: 202-209.

Coad, B.W. 2016. Contribution to the knowledge of Snakeheads of Iran (Family Channidae). Iranian Journal of Ichtyology 3(1): 65-72.

Dunham, R.A.; Benchakan, M. & Smitherman, R.O. 1983. Correlations among morphometric traits of fingerling catfishes and the relationship to dressing percentage at harvest. World Mariculture Society 14: 668-675.

Dunham, R.A. 2004. Aquaculture and fisheries bio-technology: genetic approach. CABI Publishing, Cambridge, UK.

Dwivedi, A.K. & Dubey, V.K. 2012. Advancements in morphometric differentiation : a review on stock identification among fish populations. Journal of Review Fish Biology Fisheries 24: 557.

Eagderi, S.; Poorbagher, H.; Moshayedi, F.& Hosseini, S.V. 2017. Morphological development and allometric growth patterns of Acipenser persicus Borodin, 1897 (Actinopterygii, Acipenseridae) during early development. International Journal of Aquatic Biology 5(3): 201-207.

Elmer, K.R.; Kusche, H.; Lehtonen, T.K. & Meyer, A. 2010. Local variation and parallel evolution: morphological and genetic diversity across a species complex og neotropical creater lake cichlid fishes. Philosophical Trancsactions of The Royal Society Biology 365: 1763-1782.

Firmat, C.; Schliwewn, U.K.; Losseau, M. & Alibert, P. 2012. Body shape differentiation at global and local geographic scale in the invasive cichlid Oreocrtomis mossambicus. Biological Journal of the Linnean Society 105: 369-381.

Habibie, S.A.; Djumanto, D. & Murwantoko M. 2018. Polychromatic, sexual dimorphism and redescription species of red devil Amphilophus Amarillo (Stauffer and McKaye, 2002) in Sermo Reservoir, Yogyakarta. Jurnal Iktiologi Indonesia 18: 69-86.

Imbert, E. & Lefevre. 2003. Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river syst. Journal of Ecology 91: 447-456.

Jorgensen, H.B.H.; Pertoldi, C.; Hansen, M.M.; Ruzzante, D.E. & Loeschcke, V. 2008. Genetic and enviro. correlates of morphological variation in a marine fish the case of Baltic Sea herring (Clupea harengus). Canadian Journal of Fisheries and Aquatic Sciences 65:389-400.

Kashyap, A.; Awasthi, M. & Serajuddin, M. 2016a. Phenotypic variation in freshwater murrel, Channa punctatus ( Bloch , 1793 ) from Northern and Eastern Regions of India using truss analysis. International Journal of Zoology 1-6.

Kashyap, A.; Awasthi, M. & Serajuddin, M. 2016b. Geographic morphometric variations of freshwater murrel, Channa puncatatus from Northern and Eastern Parts of India. In: Proceedings of National Academy of Science, India Section B: Biological Sciences, April 2014. pp. 367-373.

Keivany, Y.; Nezamoleslami, A. & Dorafshan, S. 2015. Morphological diversity of Garra rufa (Heckel, 1843) populations in Iran. International Journal of Zoology 2(3): 148-154.

Konan, K.M.; Adepo-Gourene, A.B.; Outtara, A.; Nyingy, W.D. & Gourene, G. 2010. Morphometric variation among male populations of freshwater shrimp Macrobrachium vollenhovenii Herklots, 1851 from Côte d’Ivoire Rivers. Fisheries Research 103: 1-8.

Katharine, D.; Gisele, P. & Pinha, D. 2017. Dispersal mode and flooding regime as drivers of benthic metacommunity structure in a Neotropical floodplain. Hydrobiologia 788:131-141.

Lakra, W.S.; Goswami, M.; Gopalakrishnan, A.; Singh, D.P.; Singh, A. & Nagpure, N.S. 2010. Genetic relatedness among fish species of Genus Channa using mitochondrial DNA genes. Biochemical Systematics and Ecology 38: 1212-1219.

Leprieur, F.; Tedesco, P.A.; Hugueny, B.; Beauchard, O.; Durr, H.H.; Brosse, S. & Oberdorff, T. 2011. Partitioning global patterns of freshwater fish betas diversity reveals constrasting signatures of past climate changes. Ecology Letters 14: 325-334.

Hossain, M.A.R.; Nahiduzzaman, Md.; Saha, D.; Khanam, Mst.U. & Alam, Md.S. 2010. Landmark-based morphometric and meristic variations of the endangered carp, Labeo calbasu, from stocks of two isolated rivers, the Jamuna and Halda, and a Hatchery. Zoological Studies 49: 556-563.

Marcus, L.F.; Corti, M.; Loy, A.; Naylor, G.J.P. & Slice, D.E. 1996. Advances in Morphometrics, 1st edition, NATO ASI Series, Plenum Press, New York.

Mehner, T. & Lauridsen, T.L. 2013. Fish diversity in European lakes : geographical factors dominate over anthropogenic pressures. Journal of Freshwater Biology 58: 1779-1793.

Moder, K.; Schlick-Steiner, B.C.; Steiner, F.M.; Cremer, S.; Christian, E. & Seifert, B. 2006. Optimal species distinction by discriminant analysis: comparing established methods of character selection with a combination procedure using ant morphometrics as a case study. Journal of Zooogical Systematic and Evolutionary Research 45: 82-87.

Miranda, L.E. 2011. Depth as an organizer of fish assemblages in floodplain lakes. Aquatic Science 73: 211-221.

Miyan, K.; Afzal, M.; Kumar, D. & Khan, S. 2016. Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system. Fisheries Research173: 294-302.

Mohaddasi, M.; Shabanipour, N. & Abdolmaleki, S. 2013. Morphometric variation among four populations of Shemaya (Alburnus chalcoides) in the South of Caspian sea using truss network. The Journal of Basic and Applied Zoology 66: 87-92.

Mustafa, A.; Widodo, M.A. & Kristianto, Y. 2012. Albumin and zinc content of snakehead fish (Channa striata) extract and its role in health. International Journal of Science and Technology 1: 1-8.

Nagarajan, M.; Haniffa, M.A.; Gopalakrishnan, A.; Basheer, V.S. & Muneer, A. 2006. Genetic variability of Channa punctatus population using Randomly Amplified Polymorphic DNA. Aquaculture Research 27: 1151-11155.

Nasri, M.; Eagderi, S.; Keivany, Y.; Farahmand, H.; Dorafshan, S. & Nezhadheydari, H. 2018. Morphological diversity of Cyprinion Heckel, 1843 species (Teleostei: Cyprinidae) in Iran. Iranian Journal of Ichtyology 5(2): 96-108.

Nguyen, N.T. & Duong, T. 2016. Morphological and genetic differences between cultured and wild populations of Channa striata in Viet Nam and its phylogenetic relationship with other Channa species. Songklanakarin Journal Science of Technology 38: 427-434.

Pease, A.A.; Gonzalez-diaz, A.A.; Rodiles-hernandez, R. & Winemiller, K.O. 2012. Funct. diversity and trait-enviro. relationships of stream fish assemblages in a large tropical catchment. Journal of Freshwater Biology 64: 367-379.

Reist, J.D. 1985. An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Canadian Journal of Zoology 63: 1429-1439.

Requieron, E.A.; Anthony, J.M.; Torres, J. & Demayo, C.G. 2012. Applications of relative warp analysis in describing of scale shape morph. between applications of relative warp analysis in describing of scale shape morph. between sexes of the snakehead fish Channa striata. International Journal of Biological, Ecological and Environmental Sciences 1: 205-209.

Rohlf, F.J. & Marcus, L.F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129-132.

Sfakianakis, D.G. & Somarakis, S. 2012. Morphological differences between wild and farmed Mediterranean fish. Hydrobiologia 679: 217-231.

Sharpe, D.M.T.; Räsänen, K.; Berner, D. & Hendry, A.P. 2008. Genetic and enviro. contributions to the morph. of lake and stream stickleback: Implications for gene flow and reproductive isolation. Evolutionary Ecology Research 10: 849-866.

Strauss, E.R. & Bookstein, F.L. 1982. The truss : Body form reconstructions in morphometrics. Systematic Zoology 31: 113-135.

Strüssmann, C.A. & Nakamura, M. 2002. Morphology, endocrinology and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiology and Biochemistry 26: 13-29.

Turan, C. 1999. A note on the examination of morphometric differentiation among fish populations: The truss system. Turkish Journal of Zoology 23: 259-263.

Topal, M. ;Yaganogle, A.M.; Sonmez, A.Y.; Arslan, G. & Hisar, O. 2010. Using discriminant and CHAID analysis methods to identify sex in brown trout (Salmo trutta fario) by morphometric features. The Israeli Journal of Aquculture-Bamidgeh 62: 251-259.

Tzeng, T.D. 2004. Morphological variation between populations of spotted mackerel (Scomber australasicus) off Taiwan. Fisheries Research 68: 45-55.

Villeger, S.; Miranda, J.R.; Hernandez, D.F. & Mouilot, D. 2010. Contrasting changes in taxonomic vs. funct. diversity of tropical fish communities after habitat degradation. Ecology of Freshwater Fish 28: 41-52.

Voris, H.K. 2000. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river syst. and time durations. Journal of Biogeography 27: 1153-1167.

Refbacks

  • There are currently no refbacks.