Interspecific morphological variation among members of the genus Cyprinion Heckel, 1843 (Teleostei: Cyprinidae) in Iran, using landmark-based geometric morphometric technique

Manoochehr NASRI, Soheil EAGDERI, Hamid FARAHMAND, Hasan NEZHADHEYDARI

Abstract

Morphological variation among Cyprinion species in Iran was studied using landmark-based geometric morphometrics. A total of 848 specimens were caught from five basins throughout Iran during 2013-2015. A total number of 15 landmark-points were defined and digitized on 2D pictures. Despite of intraspecific differences among Cyprinion fishes, CVA divided all populations into three major groups viz. C. macrostomum, C. kais and C. tenuiradius (group X), C. watsoni and C. microphthalmum (group Y) and C. milesi (group Z). According to the results, C. macrostomum group can be distinguished from other groups by having deeper body, least head length and depth, the longest dorsal-fin base and least caudal peduncle length. Cyprinion milesi has the longest anal-fin base, least body depth, deepest caudal peduncle and longest head. Cyprinion watsoni has the longest caudal peduncle and least dorsal-fin base and C. microphthalmum is distinguished by having the least caudal peduncle length and depth. The main reasons of observed intraspecies morphological diversity among the fishes is proposed to be some phenotypic plasticity related to climatic and zoogeographical factors. The results suggest that the most possible factor influencing morphological variations among Iranian Cyprinion species is habitat related differences.

Keywords

Cyprinidae, Fish distribution, Freshwater, Phenotypic plasticity, Zoogeography.

Full Text:

PDF

References

Adams, D.C.; Rohlf, F.J. & Slice, D.E. 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71: 5-16.

Asghari-Moghadam, M.-R. 2010. climatology of Iran in quaternary glaciation period. Journal of Geography 4(13): 131-149.

Aydin, R.; Şen, D.; Çalta, M. & Canpolat, Ö. 2008. The amount of calcium in bony structures used for age determination in Cyprinion macrostomus (Heckel, 1843). Aquaculture Research 39: 596-602.

Banarescu, P.M. & Coad, B.W. 1991. Cyprinids of Eurasia. In: Winfield, I.J. & Nelson, J.S. (eds.), Cyprinid Fishes, Springer Netherlands, pp. 127-155.

Banarescu, P.M. & Herzig-Straschil, B. 1995. A revision of the species of the Cyprinion macrostomus-group (Pisces: Cyprinidae). Annalen des Naturhistorischen Museums in Wien 97(B): 411-420.

Banister, K.E. & Clarke, M.A. 1997. The freshwater fishes of the Arabian Peninsula. Journal of Oman Studies, Special Report 1: 111-154.

Bookstein, F.L. 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press.

Chan, M.D. 2001. Fish ecomorphology: predicting habitat preferences of stream fishes from their body shape. PhD, fisheries and wildlife sciences, Virginia Polytechnic Institute and State University, Virginia.

Coad, B.W. 1996. Zoogeography of the fishes of the Tigris-Euphrates basin. Zoology in the Middle East 13(1): 51-70.

Coad, B.W. 2019. Freshwater fishes of Iran. www.briancoad.com. accessed (23 Feb 2018).

Daştan, S.D.; Bardakci, F. & Degerli, N. 2012. Genetic Diversity of Cyprinion macrostomus Heckel, 1843 (Teleostei: Cyprinidae) in Anatolia. Turkish Journal of Fisheries and Aquatic Sciences 12: 651-659.

Douglas, M.E. & Matthews, W.J. 1992. Does Morphology Predict Ecology? Hypothesis Testing within a Freshwater Stream Fish Assemblage. Oikos 65(2): 213-224.

Esmaeili, H.R.; Sayyadzadeh, G.; Eagderi, S. & Abbasi, K. 2018. Checklist of freshwater fishes of Iran. FishTaxa 3(3): 1-95.

Hammer, Ø. 2012. PAST: Paleontological Statistics. Natural History Museum University of Oslo. Oslo.

Heidari, A.; Mousavi-Sabet, H.; Khoshkholgh, M.; Esmaeili, H.R. & Eagderi, S. 2013. The impact of Manjil and Tarik dams (Sefidroud River, southern Caspian Sea basin) on morphological traits of Siah Mahi Capoeta gracilis (Pisces: Cyprinidae). International Journal of Aquatic Biology 1(4): 195-201.

Jalili, P.; Eagderi, S. & Keivany, Y. 2015. Body Shape Comparison of Kura Bleak (Alburnus filippii) in Aras and Ahar-Chai Rivers Using Geometric Morphometric Approach. Research in Zoology 5(1): 20-24.

Kafuku, T. 1969. Morphological differentiation of Cyprinion in Iraq. Bulletin of Freshwater Fisheries Research Laboratory 19(2): 155-159.

Keivany, Y.; Nasri, M.; Abbasi, K. & Abdoli, A. 2016. Atlas of Inland Water Fishes of Iran, 1. Iran Department of Environment. (In Farsi)

Kerschbaumer, M. & Sturmbauer, C. 2011. The Utility of GeometricMorphometrics to Elucidate Pathways of Cichlid Fish Evolution. International Journal of Evolutionary Biology 2011: 1-8.

Khataminejad, S.; Mousavi-Sabet, H.; Sattari, M.; Vatandoust, S. & Eagderi, S. 2013. A Comparative Study on Body Shape of the Genus Alburnus (Rafinesque, 1820) in Iran, Using Geometric Morphometric Analysis. Caspian Journal of Environmental Sciences 11(2): 205-215.

Klingenberg, C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353-357.

Langerhans, R.B. & DeWitt, T.J. 2004. Shared and Unique Features of Evolutionary Diversification. American Naturalist 164(3): 335-349.

Lauder, G.V. & Drucker, E.G. 2004. Morphology and Experimental Hydrodynamics of Fish Fin Control Surfaces. Ieee Journal of Oceanic Engineering, 29(3).

Marcus, L.F.; Corti, M.; Loy, A.; Naylor, G.J.P. & Slice, D.E. 1996. Advances in Morphometries. Springer Science+ Business Media, LLC.

Mohadasi, M.; Shabanipour, N. & Eagderi, S. 2013. Habitat-associated morphological divergence in four Shemaya, Alburnus chalcoides (Actinopterygii: Cyprinidae) populations in the southern Caspian Sea using geometric morphometrics analysis. International Journal of Aquatic Biology 1(2): 82-92.

Naples, V.L. & McAfee, R.K. 2012. Reconstruction of the cranial musculature and masticatory function of the Pleistocene panamerican ground sloth Eremotherium laurillardi (Mammalia, Xenarthra, Megatheriidae). Historical Biology 24(2): 187-206.

Nasri, M. 2008. Taxonomy of bigmouth lotak (Cyprinion macrostomum Heckel, 1843) and smallmouth lotak (Cyprinion kais Heckel, 1843) in Karkheh River basin and Godarkhosh River in Ilam province. M.Sc., Department of Natural Resources, Isfahan University of Technology, Isfahan. (In Farsi)

Nasri, M. 2015. Phylogeography of Genus Cyprinion in Iran. Ph.D., Department of Fisheries, University of Tehran, Tehran. (In Farsi)

Nasri, M.; Eagderi, S. & Farahmand, H. 2014. Intraspecific morphological variation of Sabzug, Cyprinion watsoni (Day, 1872) from southern and southeastern Iran based on Geometric morphometrics method. Journal of Applied Ichthyological Research 2(2): 1-13. (In Farsi)

Nasri, M.; Eagderi, S.; Farahmand, H. & Hashemzade-SegharLoo, I. 2013a. Body shape comparison of Cyprinion macrostomum (Heckel, 1843) and Cyprinion watsoni (Day, 1872) using geometric morphometric method. International Journal of Aquatic Biology 1(5): 240-244.

Nasri, M.; Eagderi, S.; Keivany, Y.; Farahmand, H.; Dorafshan, S. & Nezhadheydari, H. 2018. Morphological diversity of Cyprinion Heckel, 1843 species (Teleostei: Cyprinidae) in Iran. Iranian Journal of Ichthyology 5(2): 96-108.

Nasri, M.; Keivany, Y. & Dorafshan, S. 2013b. Comparative Osteology of Lotaks, Cyprinion kais and C. macrostomum (Cypriniformes, Cyprinidae), from Godarkhosh River, Western Iran. Journal of Ichthyology 53(6): 455-463.

Nikolski, G.V. 1963. Fish Ecology. London. Academic Press.

Poulet, N.; Berrebi, P.; Crivelli, A.J.; Lek, S. & Argillier, C. 2004. Genetic and morphometric variations in the pikeperch (Sander lucioperca L.) of a fragmented delta. Archiv für Hydrobiologie 159(4): 531-554.

Rohlf, F.J. & Marcus, L.F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8(4): 129-132.

Rohlf, F.J. & Slice, D.E. 1990. Extensions of the procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39(1): 40-59.

Rohlf, F.J. 1998. On applications of geometric morphometrics to studies of ontogeny and phylogeny. Systematic Biology 47(1): 147-158.

Rohlf, F.J. 2010. TpsDig2–Thin Plate Spline Digitise. 2.16. New York. State University of New York.

Rohlf, F.J. 2015. TpsSmall–Thin Plate Spline Small Variation Analysis. 1.33. New York. State University of New York.

Svanbäck, R.; Eklöv, P.; Fransson, R. & Holmgren, K. 2008. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos 117: 114-124.

Wood, B.M. & Bain, M.B. 1995. Morphology and microhabitat use in stream fish. Canadian Journal of Fisheries and Aquatic Sciences 52(7): 1487-1498.

Refbacks

  • There are currently no refbacks.