Main Article Content

Abstract

This study was carried out to determine the intra- and inter- population variations of chub, Squalius cephalus, utricular and lagenar otolith shapes sampled from four localities in the Black Sea region. Otolith shape indices, including Form Factor (FF), Circularity (C), Roundness (RO), Rectangularity (RE), Aspect Ratio (AR) and Ellipticity (E) were used for otolith shape analyses and multivariate analyzes (Canonical Discriminant Analysis) were used to assess interspecies variations. The FF and C were found statistically significant for lapillus, but not for asteriscus otoliths in the four habitats. Furthermore, RO was similar for all localities for both asteriscus and lapillus. CDA results showed that 66.5% of the chub individuals were correctly classified. The results indicated otolith shape can be used as a suitable tool to discriminate chub populations.

Keywords

Otolith shape analysis Lapillus Asteriscus Chub Population.

Article Details

How to Cite
ÖZPİÇAK, M., SAYGIN, S., AYDIN, A., HANCER, E., YILMAZ, S., & POLAT, N. (2019). Otolith shape analyses of Squalius cephalus (Linnaeus, 1758) (Actinopterygii: Cyprinidae) inhabiting four inland water bodies of the middle Black Sea region, Turkey. Iranian Journal of Ichthyology, 5(4), 293–302. https://doi.org/10.22034/iji.v5i4.311

References

    Aguirre, H. & Lombarte, A. 1999. Ecomorphological comparisons of sagittae in Mullus barbatus and M. surmuletus. Journal of Fish Biology 55: 105-114.
    Avigliano, E.; Domanico, A.; Sánchez, S. & Velpado, A.V. 2017. Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fisheries Research 186: 1-10.
    Begg, G.A. & Brown, R.W. 2000. Stock identification of Haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Transactions of American Fisheries Society 129: 335-345.
    Begg, G.A.; Overholtz, W.J. & Munroe, N.J. 2001. The use of internal otolith morphometrics for identification of Haddock (Melanogrammus aeglefinus) stocks on Georges Bank. U.S. National Marine Fisheries Service Fishery Bulletin 99: 1-14.
    Bostancı, D. 2009. Otolith biometry-body length relationships in four fish species (chub, pikeperch, crucian carp, and common carp). Journal of Freshwater Ecology 24(4): 619-624.
    Bostancı, D.; Polat N.; Kurucu, G.; Yedier S.; Kontaş, S. & Darcın, M. 2015. Using otolith shape and morphometry to identify four Alburnus species (A. chalcoides, A. escherichii, A. mossulensis and A. tarichi) in Turkish inland waters. Journal of Applied Ichthyology 31(6): 1013-1022.
    Boudinar, A.S.; Chaouı, L.; Quıgnard J.P.; Aurelle, D. & Kara M.H. 2016. Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean. Estuarine, Coastal and Shelf Science 182: 202-210.
    Bourehail, N.; Morat, F.; Lecomte-Finiger, R. & Kara, M.H. 2015. Using otolith shape analysis to distinguish barracudas Sphyraena sphyraena and Sphyraena viridensis from the Algerian coast. Cybium 39(4): 271-278.
    Camacho, J. 1995. Analisis multivariado con SPSS/PC+. EUB, Barcelona. 348 p.
    Campana, S.E. & Casselman, J.M. 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 50: 1062-1083.
    Campana, S.E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188(1): 263-297.
    Cardinale, M.; Doering-Arjes, P.; Kastowsky, M. & Mosegaard, H. 2004. Effects of sex stock and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Science 61: 158-167.
    Cejko, B.I. & Krejszeff, S. 2016. Sperm characteristics of chub Leuciscus cephalus (L.) collected in artificial condition after Ovopel and Ovaprim treatment. Aquatic Research 47(3):1-10.
    Devries, D.A.; Churchill, B.G. & Prager, M.H. 2002. Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of King Mackerel. Fisheries Research 57: 51-62.
    Ferguson, G.J.; Ward, T.M. & Gillanders, B.M. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fisheries Research 110(1): 75-83.
    Galley, E.A.; Wright, P.J. & Gibb, F.M. 2006. Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic Cod. ICES Journal of Marine Science 63: 1710-171.
    Geldiay, R. & Balık, S. 2007. Türkiye Tatlısu Balıkları. Bornova: Ege Üniversitesi Basımevi. 644 p.
    Gierl, C. & Reichenbacher, B. 2015. A New Fossil Genus of Gobiiformes from the Miocene Characterized by a Mosaic Set of Characters. The American Society of Ichthyologists and Herpetologists. Copeia 103(4): 792-805.
    Hüssy, K.; Mosegaard, H.; Albertsen, C.M.; Neilsen, E. E.; Hemmer-Hansen, J. & Eero, M. 2016. Evaluation of otolith shape as a tool for stock discrimination in marine fishes using Baltic Sea cod as a case study. Fisheries Research 174: 210-218.
    Ibáñez, A.L.; Hernández-Fraga, K. & Alvarez-Hernández S. 2017. Discrimination analysis of phenotypic stocks comparing fish otolith and scale shapes. Fisheries Research 185(1): 6-13.
    Kottelat, M. 1997. European freshwater fishes. A heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematics and comments on nomenclature and conservation. Biologia (Bratislava) 52(5): 1-271.
    Kurucu, G. & Bostancı, D. 2018. Using scanning electron microscopy and length-otolith size relationship for otolith morphological description of Capoeta banarescui Turan et al., 2006 and Squalius cephalus (L., 1758) (Actinopterygii: Cyprinidae) from Turkey. Acta Zoologica Bulgarica 70(1): 83-88.
    L'abee-Lund, J.H. & Jensen, A.J. 1993. Otoliths as natural tags in the systematics of salmonids. Environmental Biology of Fishes 36: 389-393.
    Lecomte-Finiger, R. 1992. The crystalline ultrastructure of otolith of the eel (A. anguilla L. 1758). Journal of Fish Biology 40: 181-190.
    Mapp, J.; Hunter, E.; Van Der Kooıj J.; Songer, S. & Fisher, M. 2017. Otolith shape and size: the importance of age when determining indices for fish-stock separation. Fisheries Research 190: 43-52.
    Montanini, S.; Stagioni M.; Benni, E. & Vallisneri, M. 2017. Ontogenetic changes in otolith morphology and shape analyses in Chelidonichthys cuculus (Linnaeus, 1758) and Chelidonichthys lucerna (L., 1758). Journal of Applied Ichthyology 33(2): 217-220.
    Ozcan E. I.; Serdar, O. & Aydın, R. 2017. Length-weight and length-length relationships of Squalius cephalus (L., 1758) in Karasu River (Erzincan-Erzurum). Yunus Araştırma Bülteni 1(1): 109-114.
    Ozulug, M. & Freyhof, J. 2011. Revision of the genus Squalius in Western and Central Anatolia, with description of four new species (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 22(2): 107-148.
    Özpiçak Zengin, M.; Saygin, S.; Aydin, A.; Hançer, E.; Yilmaz, S. & Polat, N. 2018. The relationships between otolith dimensions-total length of chub (Squalius cephalus, L.1758) sampled from some inland waters of the Middle Black Sea Region. Journal of Limnology and Freshwater Fisheries Research, 4(1): 17-24.
    Pavlov, D.A. 2016. Differentiation of three species of the genus Upeneus (Mullidae) based on otolith shape analysis. Journal of Ichthyology 56(1): 37-51.
    Petursdottir, G.; Begg, G.A. & Marteinsdottir, G. 2006. Discrimination between Icelandic Cod (Gadus morhua L.) populations from adjacent spawning areas based on otolith growth and shape. Fisheries Research 80: 182-189.
    Ponton, D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology 267: 250-257.
    Ramsay, J.O. & Silveman, B.W. 2005. Functional Data Analysis. 2nd ed, NewYork, USA, Springer. 310 p.
    Reichenbacher, B.; Gaudant, J. & Griessemer T.W. 2007. A late Burdigalian gobiid fish, Gobius brevis (AGASSIZ, 1839), in the Upper Hydrobia Beds in the middle Upper Rhine Graben (W-Germany). Palaontologische Zeitschrift 81(4): 365-375.
    Reichenbacher, B. & Cappetta, H. 1999. First evidence of an early Miocene marine teleostean fish fauna (otoliths) from La Paillade (Montpellier, France). Palaeovertebrata 28(1): 1-46.
    Renán X.; Montero-Muñoz, J.; Garza-Pérez, J.R. & Brulé, T. 2016. Age and stock analysis using otolith shape in Gags from the Southern Gulf of Mexico. Transactions of the American Fisheries Society 145(6): 1252-1265.
    Russ, J.C. 1990. Computer-Assisted Microscopy: The Measurement and Analysis of Images. Plenum Press, New York. 453 p.
    Skeljo, F. & Ferri, J. 2012. The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies. Journal of Applied Ichthyology 28: 524-530.
    Stefanova, E.; Uzunova, E.; Hubenova T.; Vasileva P.; Terziyski D. & Iliev I. 2008. Age and growth of the chub Leuciscus cephalus L., from the Maritz River (South Bulgaria). Bulgarian Journal of Agricultural Science 14(2): 214-220.
    Tarkan, A.S.; Gürsoy Gaygusuz A.; Gaygusuz O. & Acıpınar H. 2007. Use of bone and otolith measures for size-estimation of in predator- prey selection. Folia Zoologica 56(3): 328-336.
    Teimori, A. & Eslami A. 2017. Morphological-based variation of the fish populations using groupwise registration; applied to microscopic ımages of fish otolith using Aphanius dispar as a model. Iranian Journal of Science and Technology 41(4): 1083-1091.
    Tuset, V.M.; Lombarte, A. & Assis, C.A. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72(S1): 7-198.
    Tuset, V.M.; Lombarte, A.; González, J.A.; Pertusa J.F. & Lorente, M.J. 2003. Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology 6(1): 1491-1504.
    Tuset, V. M.; Rosin, P. L. & Lombarte, A. 2006. Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Research 81: 316-325.
    Vignon, M. & Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series 411(1): 231–241.
    Wakefıeld, C.B.; Williams, A.J.; Newman, S.J.; Bunel, M.; Dowling, C.E.; Armstrong, C.A. & Langois, T.J. 2014. Rapid and reliable multivariate discrimination for two cryptic Eteline snappers using otolith morphometry. Fisheries Research 151: 100-106.
    Watkinson, D.A. & Gillis, D.M. 2005. Stock discrimination of Lake Winnipeg Walleye based on Fourier and wavelet description of scale outline signals. Fisheries Research 72: 193-203.
    Zengin, M.; Saygın, S. & Polat, N. 2015. Otolith shape analysis and dimensions of the anchovy Engraulis encrasicolus L. in the Black and Marmara Seas. Sains Malaysiana 44(1): 657-662.
    Zhao, B.; Lıu J.; Song J.; Cao L. & Dou S. 2017. Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae,) from the northern Chinese coast. Chinese Journal of Oceanology and Limnology 36(3): 981-989.