Predict the potential fishing grounds for Kilka (Clupeonella spp.) fishes in southern part of the Caspian Sea using maximum entropy models and remotely sensed satellite data

Kaveh AMIRI, Nader SHABANIPOUR, Soheil EAGDERI

Abstract

During the past two decades, total catch of the Caspian Kilka have reached to a crisis point. The present study aimed to predict the Kilka Potential Fishing Zone (PFZ) across Iranian waters of southern region of the Caspian Sea. The potential fishing zones of Kilka fishes were modelled using MaxEnt and fishing points’ data in the Anzali and Babolsar ports. Two year-catch (2015 to 2016) geographical points and raster environmental images were provided to produce a map for Kilka PFZ. The selected environmental variables were, night time Sea Surface Temperature, Chlorophyll-a concentration and turbidity. According to the results, prediction could be made using the environmental factors for Kilka PFZ with high accuracy (AUC=0.96; SD=0.01) with NSST having the highest impact on the predictions.

Keywords

Fishing, Modeling, Environmental variables, Clupeidae.

Full Text:

PDF

References

Afán, I.; Navarro, J.; Cardador, L.; Ramírez, F. & Kato, A. 2014. Foraging movements and habitat niche of two closely related seabirds breeding in sympatry. Marine Biology 3: 657-668.

Amiri, K.; Alijanpour, N.; Basatnia, N. & Hadifar, A. 2014. The effect of environmental factors on catch per unit effort of Kilka species (Pisces: Clupeidae) in Southwest Caspian Sea (Anzali port). Journal of Aquatic Ecology 4: 98-102.

Anderson, R.P.; Lew, D. & Peterson, A.T. 2003. Evaluating predictive models of species distribut-ions: criteria for selecting optimal models. Ecological Modeling 162: 211-232.

Amiri, K.; Shabanipour, N. & Eagderi, S. 2017. Using kriging and co-kriging to predict distributional areas of Kilka species (Clupeonella spp.) in the southern Caspian Sea. International Journal of Aquatic Biology 5: 108-113.

Antonymous. 1978. Ecological features of the Caspian kilka (Genus Clupeonella). Caspian Fisheries Research Institute, Kaspenirkh. 150 p.

Basher, Z. & Costello, M.J. 2016. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. Peerj 4: 1-22.

Chifamba, P.C .2000. The relationship of temperature and hydrological factors to catch per unit effort, condition and size of the freshwater sardine, Limnothrissa miodon (Boulenger), in Lake Kariba. Fisheries Research 4: 271-281.

Chen, Z.; Hu, C.; Mullerr-Karger, F. & Luther, M. (2017). Physical forcing of short bio-optical variability in Tampa Bay: Observations from a coastal tower. Limnology and Oceanography. (In press)

Esmaeili, H.R.; Babai, S.; Gholomifard, A.; Pazira, A.; Gholamhosseini, A. & Coad, B.W. 2015. Fishes of the Persis region of Iran: an updated checklist and ichthyogeography. Iranian Journal of Ichthyology 2: 201-223.

Fazli, H.; Zhang, C.I.; Hay, D.E.; Lee, C.W.; Janbaz, A.A. & Borani, M.S. 2007. Population ecological parameters and biomass of anchovy kilka (Clupeonella engrauliformis) in the Caspian Sea. Fisheries Science 73: 285-294.

Fazli, H. & Besharat, K. 1998. Kilka stock assessment using hydro-acoustic method and commercial catch monitoring, 1976-1977. Final report, Mazandaran Fisheries Research Center. 105 p.

Fitrianah, D.; Praptono, N.H.; Hidayanto, A.N. & Arymurthy, A.M. 2015. Feature exploration for prediction of potential tuna fishing zones. International Journal of Information and Electronics Engineering 5: 270-274.

Gunduz, M. & Özsoy, E. 2014. Modelling seasonal circulation and thermohaline structure of the Caspian Sea. Ocean Science 10: 459-471.

Graham, C.H.; Ferrier, S., Huettman, F.; Moritz, C. & Peterson, A.T. 2004. New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecological and Evolution 19: 497-503.

Gomez, J.J. & Cassini, M.H. 2015. Environmental predictors of habitat suitability and bio geographical. Global Ecology and Conservation 3: 90-99.

Gonza´lez-Irusta, J.M.; Porto, M.G.; Sarralde, R.; Arrese, B. & Almon, B. 2015. Pablo Martın-Sosa. Comparing species distribution models: a case study of four deep sea urchin species. Hydrobiologia 745: 43-57.

Hirzel, A.H.; Hausser, J.; Chessel, D. & Perrin, N. 2002. Ecological niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027-2036.

Ivanov, V.P. 2000. Biological resources of the Caspian Sea. Astrakhan Caspnirkh 96 p.

Jaynes, E.T. 1957. Information theory and statistical mechanics. Physical Review 106: 620-630.

Karimzadeh, G.; Gabrielian, B. & Fazli, H. 2010. Population dynamics and biological characteristics of kilka species (Pisces: Clupeidae) in the south eastern coast of the Caspian Sea. Iranian Journal of Fisheries Sciences 9: 422-433.

Karpinsky, M.G. 2002. Ecology of the Benthos of the Middle and Southern Caspian. VNIRO, Moscow.

Mamedov, E.V. 2006. The biology and abundance of kilka (Clupeonella spp.) along the coast of Azerbaijan, Caspian Sea. ICES Journal of Marine Science 63: 1665-1673.

Teimori, A.; Esmaeili, H. R.; Sayyadzadeh, G.; Zarei, N. & Gholamhosseini, A. 2015 .Molecular systematics and distribution review of the endemic cyprinid species, Persian chub, Acanthobrama persidis (Coad, 1981) in Southern Iran (Teleostei: Cyprinidae). Molecular Biology Research Communications 4: 189-206.

Meiyner, K.; Fiorentino, D.; Schnurr, S.; Martine, Z.; Arbizu, P.; Huettmann, F.; Holst, S.; Brix, S. & Svavarsson, J. 2014. Distribution of benthic marine invertebrates at northern latitudes - an evaluation applying multi-algorithm species distribution models. Journal of Sea Research 85: 241-254.

Naseka, A.M. & Bogutskaya, N.G. 2009. Fishes of the Caspian Sea: zoogeography and updates check-list. Zoosystematic Rossica 18: 295-317.

Naslund. J.; Didrikas. T. & Šaškov. A. 2011. Predicted herring (Clupea harengus) spawning grounds on the Lithuanian coast. Aqua biota report 1. 1654-7225.

Oldenburg, C.; Stenzel, S. & Schmidtlein, S. 2012. Manual for Application: MaxEnt-Wrapper (1.4). TODO. 16 p.

Parra, H.A.E. 2012. Habitat predictive modelling of demersal fish species in the Azore .Universidade Dos Acores. Departmento de ocenografia E pescas. 41 p.

Peavey, L. 2010. Predicting Pelagic Habitat with Presence-only Data using Maximum Entropy for Olive Ridley Sea Turtles in the Eastern Tropical Pacific. Masters project, Duke University l: 76 p.

Pennock, J.R. & Sharp, J.H. 1994. Temporal alteration between light and nutrient limitation of phytoplankton production in a coastal plain estuary. Marine ecology Progress Series Journal 111: 275-288.

Peterson, A.T. & Shaw, J. 2003. Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distribution, and climate change effects. International Journal for Parasitology 33: 919-931.

Phillips, S.J.; Dudik. M. & Schapire, R.E. 2004. A Maximum Entropy Approach to Species Distribution. Modeling Proceedings of the Twenty-First International Conference on Machine Learning. pp: 655-662.

Phillips, S.J.; Dudık, M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31: 161-75.

Phillips, S.J.; Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species 422 geographic distributions. Ecological Modelling 190: 231-259.

Poulos, H.M.; Chernoff, B.; Fuller, P.L. & Butman, D. 2012. Mapping the potential distribution of the invasive red shiner, Cyprinella lutrensis (Teleostei: Cyprinidae) across waterways of the conterminous United States. Aquatic Invasions 7: 377-385.

Prikhodko, B.I. 1981. Ecological features of the Caspian kilka (genus Clupeonella). Scripta Publishing Co. pp: 27-35.

Prikhodko B.I. 1975. Kilka of the Caspian Sea and their abundance. Trudy VNIRO 108: 144-153.

Rahul, P.R.C. 2011. Interlacing ocean model simulations and remotely sensed biophysical parameters to identify integrated potential fishing zones. The IEEE Geoscience and Remote Sensing Letters 8: 789-793.

Razavy Sayad, B. 1993. Abundance and distribution of Kilka in Iranian waters. Bulletin of the Iranian Fishery 2: 11-25.

Sedov, S.I.; Paritskiy, Y.A.; Zikov, L.A.; Kolosyuk, G.G.; Aseinova, A.A. & Andrianova, S.B. 2001. Biology and fisheries of marine fish The State of Commercial Objects Stocks in the Caspian and their Use. Astrakhan CaspNIRKh Publishing. pp: 186-205.

Semedi, B. & Hadiyanto, A.L. 2013. Forecasting the fishing ground of small pelagic fishes in Makassar Strait using moderate resolution image Spectroradio-meter satellite images. Journal of Applied Environmental and Biological Science 3: 29-34.

Strukova, E.; Guchgeldiyev, O.; Evans, A.; Katunin, D.; Khodorevskaya, R.; Kim, Y.; Akhundov, M.; Mammadli, T.; Shahivar, R. & Muradov, O. 2015. Exploitation of the Caspian Sea Bioresources (with Focus on Economics of Bioresources Utilization). The Handbook of Environmental Chemistry. pp: 1-44.

Shattri, M. 2001. Satellite fish forecasting in South China Sea, presented at the 22nd Asian Conference on Remote Sensing, pp: 22-25.

Syah, A.F.; Saitoh, S.; Alabia, I.D. & Hirawake, T. 2016. Predicting potential fishing zones for Pacific saury (Cololabissaira) with maximum entropy models and remotely sensed data. Fishery Bulletin 2: 330-342.

Townsend Peterson, A.; Papes, M. & Soberon, J. 2008. Rethinking receiver operating Q6 characteristic analysis applications in ecological niche modeling. Ecological Modeling 213: 63-72.

Townsend Peterson, A. & Cohoon, K.P. 1999. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modeling 117: 159-64.

Thuiller, W. 2003. BIOMOD optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9: 1353-1362.

Refbacks

  • There are currently no refbacks.