Main Article Content

Abstract

Copper is a very common element in water resources. For this reason, concerns about the risks and consequences of this element in water contamination are arising. The purpose of this study was to investigate the effects of water-born CuO (Copper (II) oxide) on the rainbow trout, Oncorhynchus mykiss gill tissue to establish a suitable biomarker for copper in water resources. Samples with 18±3g body weight were exposed to CuO for a week with 0.0125, 0.037, 0.075, and 0.15 ppm of copper sulfate and a control group (without CuO). Physicochemical properties of water were 15±2ºC, pH 7-8, Caco3 270mg/l and oxygen saturation 90.9±0.2%. At the end of 7 days, 9 fish were caught randomly from each treatment and second gill from left side of fish were removed for histological study. Hyperplasia, oedema, epithelial lifting in secondary lamella and lamellar aneurysm were observed in gill tissues, showing that CuO, as a copper ion, has significant adverse effects on gill tissues of rainbow trout and gills can be a suitable biomarker for copper in water resources.

Keywords

Biomarker Gill Heavy metals Oncorhynchus mykiss.

Article Details

How to Cite
KHABBAZI, M., HARSIJ, M., HEDAYATI, S. A. A., GERAMI, M. H., & GHAFARI-FARSANI, H. (2015). Histopathology of rainbow trout gills after exposure to copper. Iranian Journal of Ichthyology, 1(3), 191–196. https://doi.org/10.22034/iji.v1i3.26

References

    Al-Attar, A.M. 2007. The influences of nickel exposure on selected physiological parameters and gill structure in the teleost fish Oreochromis niloticus. Journal of Biological Sciences 7: 77-85.
    Al-Bairuty, G.A.; Shaw, B.D.; Handy, R.B. & Henry, T. 2013. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 126: 104-115.
    ATSDR (Agency for Toxic Substances and Disease Registry). 1990. Toxicological Profile for Copper. US Public Health Service, Atlanta, Georgia. TP-90-08. 143 pp.
    Au, D.W.T. 2004. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Marine Pollution Bulletin 48: 817–834.
    Bucke, D. 1982. Some histological techniques applicable to fish tissues, Mawdesley -Thomas. LE. Edn 10, Diseases of fish. Symposium of Zoology Society, London, Vol. 30, Academic Press, New York, 153p.
    Carbonell, G. & Tarazona, J.V. 1994. Toxicokinetics of copper in rainbow trout. Aquatic Toxicology 29: 213-221.
    Dang, Z.; Lock, R.A.C.; Flik, G. & Wendelaar Bonga, S.E. 1999. The metallothionein response in gills of Oreochromis mossambicus exposed to copper in fresh water. American Journal of Physiology 277: R320-R331.
    Esmaeili, H.R.; Coad, B.W.; Mehraban, H.R.; Masoudi, M.; Khaefi, R.; Abbasi, K.; Mostafavi, H. & Vatandoust, S. 2014. An updated checklist of fishes of the Caspian Sea basin of Iran with a note on their zoogeography. Iranian Journal of Ichthyology 1(3): 152-184.
    Fernandes, C.; Fontainhas-Fernandes, A.; Monteiro, S.M. & Salgado, M.A. 2007. Histopathological gill changes in wild leaping gray mullet (Liza saliens) from the Esmoriz-Paramos coastal lagoon, Portugal. Environmental Toxicology 22: 443-448.
    Garcia-Santos, S.; Monteiro, M.; Carrola, J. & Fontainhas-Fernandes, A. 2007. Histopathological lesions of tilapia Oreochromis niloticus gills caused by cadmium. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 59: 376-381.
    Griffitt, R.J.; Hyndman, K.; Denslow, N.D. & Barber, D.S. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicology Sciences 107: 404-415.
    Grosell, M.; Blanchard, J.; Brix, K.V. & Gerdes, R. 2007. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquatic Toxicology 84: 162–172.
    Handy, R.D. & Maunder, R.J. 2009. The biological roles of mucus: importance for osmoregulation and osmoregulatory disorders of fish health. In: Handy, R.D., Bury, N.R. & Flik, G. (Eds.), Osmoregulation and Ion Transport: Integrating Physiological, Molecular and Environmental Aspects. Essential Reviews in Experimental Biology, vol. 1. Society for Experimental Biology Press, London, pp. 203-235.
    Handy, R.D. 2003. Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process? Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 135: 25-38.
    Hao, L.; Wang, Z. & Xing B. 2009. Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). Journal of Environmental Sciences 21: 1459–1466.
    He, X.; Nie, X.; Wang, Z.; Cheng, Z.; Li, K.; Li, G.; Wong, M.H.; Liang, X.& Tsui, M.T.K. 2011. Assessment of typical pollutants in waterborne by combining active biomonitoring and integrated biomarkers response. Chemosphere 84: 1422-1431.
    Hermoso, V.; Clavero, M.; Blanco-Garrido, F. & Prenda, J., 2010. Assessing the ecological status in species-poor systems: a fish-based index for Mediterranean Rivers (Guadiana River, SW Spain). Ecological Indicators 10: 1152-1161.
    Hesni, M.A.; Savari, A.; Sohrab, A.D. & Mortazavi, M.S. 2011. Gill histopathological changes in milkfish (Chanos chanos) exposed to acute toxicity of diesel oil. World Applied Sciences Journal 14: 1487-1492.
    Mallatt, J. 1985. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries & Aquatic Sciences 42: 630-648.
    Mazon, A.F.; Cerqueira, C.C.C. & Fernandes, M.N. 2002. Gill Cellular Changes Induced by Copper Exposure in the South American Tropical Freshwater Fish Prochilodus scrofa. Environmental Research Section A 88: 52-63.
    Moitra, S.; Bhattacharjee, R. & Sen, N.S. 2012. Histopathological changes in the gills of air breathing teleost Clarias batrachus Linn. exposed to endosulfan. Asian Journal of Experimental Sciences 26: 23-26.
    Monteiro, S.M.; Rocha, E.; Fontaínhas-Fernandes, A. & Sousa, M. 2008. Quantitative histopathology of Oreochromis niloticus gills after copper exposure. Journal of Fish Biology 73: 1376-1392.
    Mustafa, S.A.; Davies, S.J. & Jha, A.N. 2012. Determination of hypoxia and dietary copper mediated sub-lethal toxicity in carp, Cyprinus carpio, at different levels of biological organisation. Chemosphere 87: 413–422.
    Pandey, S.; Parvez, S.; Ansari, R.A.; Ali, M.; Kaur, M.; Hayat, F.; Ahmad, F. & Raisuddin, S. 2008. Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctate Bloch. Chemico-Biological Interactions 174: 183–192.
    Patnaik, B.B.; Howrelia, H.J.; Mathews, T. & Selvanayagam, M. 2011. Histopathology of gill, liver, muscle and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. African Journal of Biotechnology 10: 12218-12223.
    Pelgrom, S.M.G.J.; Lock, R.A.C.; Balm, P.H.M. & Wendelaar Bonga, S.E. 1995. Integrated physiological response of tilapia, Oreochromis mossambicus, to sublethal copper exposure. Aquatic Toxicology 32: 303-320.
    Pereira, S.; Pinto, A.L.; Cortes, R.; Fontainhas-Fernandes, A.; Coimbra, A.M. & Monteiro, S.M. 2013. Gill histopathological and oxidative stress evaluation in native fish captured in Portuguese northwestern rivers. Ecotoxicology and Environmental Safety 90: 157-166.
    Santos, D.C.M.; Matta, S.L.P.; Oliveira, J.A. & Santos, J.A.D. 2011. Histological alterations in gills of Astyanax aff. bimaculatus caused by acute exposition to zinc. Experimental & Toxicologic Pathology 64: 861-866.
    Scardi, M.; Cataudella, S.; Di Dato, P.; Fresi, E. & Tancioni, L. 2008. An expert system based on fish assemblages for evaluating the ecological quality of streams and rivers. Ecological Informatics 3: 55-63.
    Stentiford, G.; Longshaw, M.; Lyons, B.; Jones, G.; Green, M. & Feist, S. 2003. Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants. Marine Environmental Research 55: 137-159.
    Teh, S.T.; Adams, S.M. & Hinton, D.E. 1997. Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminate stress. Aquatic Toxicology 37: 51-70.
    Tlili, S.; Jebali, J.; Banni, M.; Haouas, Z.; Mlayah, A.; Helal, A.N. & Boussetta, H. 2010. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites. Environmental Monitoring and Assessment 168: 285–298.
    USEPA. 2007. Aquatic life ambient freshwater quality criteria – copper. 2007 Revision. EPA-822-R-07-001 (CAS Registry Number 7440-50-8). Washington, DC: US Environmental Protection Agency and Office of Water.
    Van Dyk, J.C. & Pieterse, G.M. 2008. A histo-morphological study of the testis of the sharptooth catfish (Clarias gariepinus) as reference for future toxicological assessments. Journal of Applied Ichthyology 24: 415-422.
    Viarengo, A.; Burlando, B.; Giordana, A.; Bolognesi, C. & Gabrielides, G.P. 2000. Networking and expert-system analysis: next frontier in biomonitoring. Marine Environmental Research 49: 483-486.
    Zhou, B. & Gitschier J. 1997. HCTR1: A human gene for copper uptake identified by complementation in yeast. Proceedings of the National Academy of Sciences of the United States of America 94: 7481-7486.
    Zorita, I.; Apraiz, I.; Ortiz-Zarragoitia, M.; Orbea, A.; Cancio, I.; Soto, M.; Marigo´mez, I. & Cajaraville, M. 2007. Assessment of biological effects of environmental pollution along the NW Mediterranean Sea using mussels as sentinel organisms. Environmental Pollution 148: 236-250.