Main Article Content

Abstract

The toxic impact of copper sulfate in lethal and sublethal concentrations was investigated on gill of grass carp, Ctenopharynogodon idella. In this investigation, 27 specimens were used as control group and three treatment groups were treated with 2.5 and 5mg/l of copper sulfate. Gill samples were collected from each treatment after 96hr and lesions were analyzed by light microscopy. In histopathological study of the gill tissues, hyperplasia was clearly obvious in treatment specimens. In all of the treated groups, heavy gill-mucus response was observed, which indicate a direct relation with high concentrations. Also, in histological study of the gill, epithelial cells faced to hyperplasia, which increased with high copper densities. Primary lamellar cells wrinkling and also changing in formation were observed in chloride cells. This lesion enhanced in higher densities and in concentrations of 2.5 and 5mg/l, primary and secondary lamellar epithelial cells were degenerated.

Keywords

Heavy metals Gills Histopathological Ctenopharynogodon idella Teleostei.

Article Details

How to Cite
ATABATI, A., KEYKHOSRAVI, A., ASKARI-HESNI, M., VATANDOOST, J., & MOTAMEDI, M. (2015). Effects of Copper Sulfate on gill histopathology of grass carp (Ctenopharyngodon idella). Iranian Journal of Ichthyology, 2(1), 35–42. https://doi.org/10.22034/iji.v2i1.13

References

    Adams, S.M. & Ryon, M.G. 2000. Evaluating effects of contaminants on fish health at multiple levels of biological organization: Extrapolating from lower to higher levels. Human and Ecological Risk Assessment 6(1): 15-27.
    Adams, D.H. & Sonne, C. 2013. Mercury and histopathology of the vulnerable goliath grouper, Epinephelus itajara, in U.S. waters: A multi-tissue approach. Environmental Research 126: 254-263.
    Adham, K.G.; Hamed, S.S.; Ibrahim, H.M. & Saleh, R.A. 2002. Impaired Functions in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1757), from Polluted Waters. Acta Hydrochimica et Hydrobiologica 29(5): 278-288.
    Ahmed, K.M.; Habibullah-Al-Mamun, M.; Parvin, E.; Akter, M.S. & Khan, M.S. 2013. Arsenic induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology 65 (6): 903-909.
    Alazemi, B.M.; Lewis, J.W. & Anddrews, E.B. 1996. Gill damage in the freshwater fish Gnathnonemus petersii (Family: Mormyridae) exposed to selected pollutants: An ultrastructure study. Environmental Technology 17: 225-238.
    Arellano, J.M.; Storch, V. & Sarasquete, C. 1999. Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicology and Environmental Safety 44: 62-72.
    Askari Hesni, M.; Dadolahi-Sohrab, A.; Savari, A. & Mortazavi, M.S. 2011. Gill Histopathological Changes in Milkfish (Chanos chanos) Exposed to Acute Toxicity of Diesel Oil. World Applied Sciences Journal 14 (10): 1487-1492.
    Baker, J.T.P. 1969. Histological and electron microscopical observations on copper poisoning in the winter flounder (Pseudopleuronectes americanus). Journal of the Fisheries Research Board of Canada 26: 2785-2793.
    Di Giulio R.T. & Hinton D.E. 2008. The toxicology of fishes. CRC Press, USA, Pp 28-35.
    Farhangi, M.; Gholipour Kanani, H.; Aliakbariyan, A. & Kashani, M. 2014. Effect of Copper sulfate on behavioral and histopathological changes in roach, Rutilus rutilus caspicus. Caspian Journal of Environmental Sciences 12 (1): 73-79.
    Farkas, A.; Salanki, J. & Specziar, A. 2003. Relation between growth and the heavy metal concentration in organs of bream, Abramis brama L. populating Lake Balaton. Arch. of Environ. Contaminant Toxicology 43(2): 236-243.
    Figueiredo-Fernandes, A.; Ferreira-Cardoso, V.; Garcia-Santos, S.; Monteiro, M.; Monteiro, M.; Carrola, J.; Matos, O. & Fontainhas-Fernandes, A. 2007. Istopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesquisa Veterinaria Brasileira 27: 3-8.
    Fontainhas-Fernandes, A.; Gomes, E.; Reis-Henriques, M.A. & Coimbra, J. 1999. Replacement of fish meal by plant protein in the diet of tilapia (Oreochromis niloticus): Digestibility and growth performance. Aquaculture International 7: 57-67.
    Garcia-Santos, S.; Fontainhas-Fernandes, A. & Wilson, J.M. 2006. Cadmium tolerance in the Nile tilapia (Oreochromis niloticus) following acute exposure: Assessment of some ionoregulatory parameters. Environmental Toxicology 21(6): 33-46.
    Handy, R.D. 2003. Chronic effects of copper exposure vs. endocrine toxicity: Two sides of the same toxicological process? Comparative Biochemistry and Physiology 135(1): 25-38.
    Hassaninezhad, L.; Safahieh, A.; Salamat, N.; Savari, A. & Erfani-Majd, N. 2014. Assessment of gill pathological responses in the tropical fish yellow fin seabream of Persian Gulf under mercury exposure. Toxicology Reports 1: 621-628
    Jafri, S.I.H. & Shaikh, S.A. 1998. Toxicity of copper to tilapia, Oreochromis mossambicus (Teleostei): Histopathology of liver and testis. Pakistan Journal of Zoology 30(3): 167-171.
    Jagoe, C.H.; Matey, V.E.; Haines, T.A. & Komov, V.T. 1993. Effect of beryllium on fish in acid water is analogpus to aluminium toxicity. Aquatic Toxicology 24: 241-156.
    Karlsson-Norggren, L.; Dickson, W.; Ljungberg, O. & Runn, P. 1986. Acid water and aluminium exposure: gill lesions and aluminium accumulation in farmed, brown trout, Salmo trutta. L. Journal of Fish Diseases 9: 1-9.
    Kock, G.; Triend, M. & Hofer, R. 1996. Seasonal patterns of metal accumulation in Arctic char (Salvelinus alpinus) from an oligotrophic Alpine lake related to temperature. Canadian Journal of Fisheries and Aquatic Sciences 53: 780-786.
    Li, J.; Quabius, S.E.; Wendelaar Bonga, S.; Flick, G. & Lock, R.A.C. 1998. Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambique tilapia (Oreochromis mossambicus). Aquatic Toxicology 43: 1-11.
    Mallat, J. 1985. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Sciences 42: 630-648.
    Mazon, A.F.; Cerqueira, C.C.C. & Fernandes, M.N. 2002. Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa. Environmental Research 88: 52-63.
    Morgan, M. & Tovell, P.W.A. 1973. The structure of the gill of the trout, Salmo gairdneri. Mikroskopische Anatomie 142: 147-162.
    Pane, E.F.; Haque, A. & Wood, C.M. 2004. Mechanistic analysis of acute, Ni-induced respiratory toxicity in the rainbow trout (Oncorhynchus mykiss): an exclusively branchial phenomenon. Aquatic Toxicology 69: 11-24.
    Patel, J.M. & Bahadur, A. 2010. Histopathological manifestations of sub lethal toxicity of Copper ions in Catla catla. American-Eurasian Journal of Toxicological Sciences 3(1): 1-5.
    Pawert, M.; Muller, E. & Triebskorn, R. 1998. Ultrastructural changes in fish gills as biomarker to assess small stream pollution. Tissue and Cell 30: 617-626.
    Pelgrom, S.; Lamers, L.; Lock, R.; Balm, P. & Wendelaar, B.S. 1995. Integrated physiological response of tilapia, Orechromis mossambicus, to sublethal copper exposure. Aquatic Toxicology 32: 303-320.
    Perry, S.F. & Laurent, P. 1993. Environmental effects on fish gill structure and function. In: Rankin, J.C., Jensen, F.B. (eds), Fish Physiology. Chapman and Hall, London: 231-264.
    Rajeshkumar,S.; Mini,J.& Munuswamy, N. 2013. Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of Milkfish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicology and Environmental Safety 98 (1): 8-18.
    Reid, S.D. & McDonald, D.G. 1988. Effects of cadmium, copper and low pH on ion-fluxes in the rainbow trout, Salmo gairdneri. Canadian Journal of Fisheries and Aquatic Sciences 45: 244-253.
    Schwaiger, J.; Ferling, H.; Mallow, U.; Wintermayr, H. & Negele, R.D. 2004. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I. Histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology 68: 141-150.
    Senger, H. & Braunbeck, T. 1988. Hepatocellular adaptation to extreme nutritional conditions in ide, Leuciscusideus melanotus L. (Cyprinidae). A morphofunctional analysis. Fish Physiology and Biochemistry 5: 79-97.
    Straus, D.L. 2003. The acute toxicity of copper to blue tilapia in dilutions of settled pond water. Aquaculture 219: 233-240.
    Thophon, S.; Kruatrachue, M.; Upatham, E. S.; Pokethitiyook, P.; Sahaphong, S. & Jaritkhuan, S. 2003. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure. Environmental Pollution 121: 307-320.
    Triebskorn, R.; Kohler, H. R.; Honnen, W.; Schramm, M.; Adams, S.M. & Muller, E.F. 1997. Induction of heat shock proteins, changes in liver ultrastructure, and alternations of fish behavior: Are these biomarkers related and are they useful to reflect the state of pollution in the field? Journal of Aquatic Ecosystem Stress and Recovery 6: 57-73.
    Ultsch, G.R.; Ott, M.E. & Heisler, N. 1980.Standard metabolic rate, critical oxygen tension and aerobic scope for spontaneous activity of trout (Salmo gairdneri) in acidified water. Comparative Biochemistry and Physiology 67A: 329-335.
    Van Heerden, D.; Vosloo, A. & Nikinmaa, M. 2004. Effects of short-term copper exposure on gill structure, methallothionein and hypoxia-inducible factor-1á (HIF-1á) levels in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology 69: 271-280.
    Weinstein, J.E.; Oris, T. & Taylor, D.H. 1997. An ultrastructural examination of the mode of UV-induced toxic action of fluoranthene in the fathead minnow, Pimephales promelas. Aquatic Toxicology 39: 1-22.
    Wani, A.A.; Sikdar-Bar, M.; Borana, K.; Khan, H.A.; Andrabi, S.S.M. & Pervaiz, P.A. 2011. Histopathological Alterations Induced in Gill Epithelium of African Catfish, Clarias gariepinus, Exposed to Copper Sulfate. Asian Journal of Experimental Biological Sciences 2(2): 278-282.